2,091 research outputs found

    Suppression of grapevine powdery mildew (Uncinula necator) by acibenzolar-S-methyl

    Get PDF
    Research Not

    Molecular evolution of aphids and their primary ( Buchnera sp.) and secondary endosymbionts: implications for the role of symbiosis in insect evolution.

    Get PDF
    Aphids maintain an obligate, endosymbiotic association with Buchnera sp., a bacterium closely related to Escherichia coli. Bacteria are housed in specialized cells of organ-like structures called bacteriomes in the hemocoel of the aphid and are maternally transmitted. Phylogenetic studies have shown that the association had a single origin, dated about 200-250 million years ago, and that host and endosymbiont lineages have evolved in parallel since then. However, the pattern of deepest branching within the aphid family remains unsolved, which thereby hampers tin appraisal of, for example, the role played by horizontal gene transfer in the early evolution of Buchnera. The main role of Buchnera in this association is the biosynthesis and provisioning of essential amino acids to its aphid host. Physiological and metabolic studies have recently substantiated such nutritional role. In addition, genetic studies of Buchnera from several aphids have shown additional modifications, such as strong genome reduction, high A+T content compared to free-living bacteria, differential evolutionary rates, a relative increase in the number of non-synonymous substitutions, and gene amplification mediated by plasmids. Symbiosis is an active process in insect evolution cis revealed by the intermediate values of the previous characteristics showed by secondary symbionts compared to free-living bacteria and Buchnera

    Area law and vacuum reordering in harmonic networks

    Full text link
    We review a number of ideas related to area law scaling of the geometric entropy from the point of view of condensed matter, quantum field theory and quantum information. An explicit computation in arbitrary dimensions of the geometric entropy of the ground state of a discretized scalar free field theory shows the expected area law result. In this case, area law scaling is a manifestation of a deeper reordering of the vacuum produced by majorization relations. Furthermore, the explicit control on all the eigenvalues of the reduced density matrix allows for a verification of entropy loss along the renormalization group trajectory driven by the mass term. A further result of our computation shows that single-copy entanglement also obeys area law scaling, majorization relations and decreases along renormalization group flows.Comment: 15 pages, 6 figures; typos correcte

    Violation of area-law scaling for the entanglement entropy in spin 1/2 chains

    Full text link
    Entanglement entropy obeys area law scaling for typical physical quantum systems. This may naively be argued to follow from locality of interactions. We show that this is not the case by constructing an explicit simple spin chain Hamiltonian with nearest neighbor interactions that presents an entanglement volume scaling law. This non-translational model is contrived to have couplings that force the accumulation of singlet bonds across the half chain. Our result is complementary to the known relation between non-translational invariant, nearest neighbor interacting Hamiltonians and QMA complete problems.Comment: 9 pages, 4 figure

    Equivalence of critical scaling laws for many-body entanglement in the Lipkin-Meshkov-Glick model

    Get PDF
    We establish a relation between several entanglement properties in the Lipkin-Meshkov-Glick model, which is a system of mutually interacting spins embedded in a magnetic field. We provide analytical proofs that the single-copy entanglement and the global geometric entanglement of the ground state close to and at criticality behave as the entanglement entropy. These results are in deep contrast to what is found in one- dimensional spin systems where these three entanglement measures behave differently.Comment: 4 pages, 2 figures, published versio

    Multi-party entanglement in graph states

    Full text link
    Graph states are multi-particle entangled states that correspond to mathematical graphs, where the vertices of the graph take the role of quantum spin systems and edges represent Ising interactions. They are many-body spin states of distributed quantum systems that play a significant role in quantum error correction, multi-party quantum communication, and quantum computation within the framework of the one-way quantum computer. We characterize and quantify the genuine multi-particle entanglement of such graph states in terms of the Schmidt measure, to which we provide upper and lower bounds in graph theoretical terms. Several examples and classes of graphs will be discussed, where these bounds coincide. These examples include trees, cluster states of different dimension, graphs that occur in quantum error correction, such as the concatenated [7,1,3]-CSS code, and a graph associated with the quantum Fourier transform in the one-way computer. We also present general transformation rules for graphs when local Pauli measurements are applied, and give criteria for the equivalence of two graphs up to local unitary transformations, employing the stabilizer formalism. For graphs of up to seven vertices we provide complete characterization modulo local unitary transformations and graph isomorphies.Comment: 22 pages, 15 figures, 2 tables, typos corrected (e.g. in measurement rules), references added/update

    Universal geometric entanglement close to quantum phase transitions

    Get PDF
    Under successive Renormalization Group transformations applied to a quantum state Ψ\ket{\Psi} of finite correlation length ξ\xi, there is typically a loss of entanglement after each iteration. How good it is then to replace Ψ\ket{\Psi} by a product state at every step of the process? In this paper we give a quantitative answer to this question by providing first analytical and general proofs that, for translationally invariant quantum systems in one spatial dimension, the global geometric entanglement per region of size LξL \gg \xi diverges with the correlation length as (c/12)log(ξ/ϵ)(c/12) \log{(\xi/\epsilon)} close to a quantum critical point with central charge cc, where ϵ\epsilon is a cut-off at short distances. Moreover, the situation at criticality is also discussed and an upper bound on the critical global geometric entanglement is provided in terms of a logarithmic function of LL.Comment: 4 pages, 3 figure

    Tremor in motor neuron disease may be central rather than peripheral in origin

    Get PDF
    BACKGROUND AND PURPOSE: Motor neuron disease (MND) refers to a spectrum of degenerative diseases affecting motor neurons. Recent clinical and post-mortem observations have revealed considerable variability in the phenotype. Rhythmic involuntary oscillations of the hands during action, resembling tremor, can occur in MND, but their pathophysiology has not yet been investigated. METHODS: A total of 120 consecutive patients with MND were screened for tremor. Twelve patients with action tremor and no other movement disorders were found. Ten took part in the study. Tremor was recorded bilaterally using surface electromyography (EMG) and triaxial accelerometer, with and without a variable weight load. Power spectra of rectified EMG and accelerometric signal were calculated. To investigate a possible cerebellar involvement, eyeblink classic conditioning was performed in five patients. RESULTS: Action tremor was present in about 10% of our population. All patients showed distal postural tremor of low amplitude and constant frequency, bilateral with a small degree of asymmetry. Two also showed simple kinetic tremor. A peak at the EMG and accelerometric recordings ranging from 4 to 12 Hz was found in all patients. Loading did not change peak frequency in either the electromyographic or accelerometric power spectra. Compared with healthy volunteers, patients had a smaller number of conditioned responses during eyeblink classic conditioning. CONCLUSIONS: Our data suggest that patients with MND can present with action tremor of a central origin, possibly due to a cerebellar dysfunction. This evidence supports the novel idea of MND as a multisystem neurodegenerative disease and that action tremor can be part of this condition

    Reduced density matrix and entanglement entropy of permutationally invariant quantum many-body systems

    Full text link
    In this paper we discuss the properties of the reduced density matrix of quantum many body systems with permutational symmetry and present basic quantification of the entanglement in terms of the von Neumann (VNE), Renyi and Tsallis entropies. In particular, we show, on the specific example of the spin 1/21/2 Heisenberg model, how the RDM acquires a block diagonal form with respect to the quantum number kk fixing the polarization in the subsystem conservation of SzS_{z} and with respect to the irreducible representations of the Sn\mathbf{S_{n}} group. Analytical expression for the RDM elements and for the RDM spectrum are derived for states of arbitrary permutational symmetry and for arbitrary polarizations. The temperature dependence and scaling of the VNE across a finite temperature phase transition is discussed and the RDM moments and the R\'{e}nyi and Tsallis entropies calculated both for symmetric ground states of the Heisenberg chain and for maximally mixed states.Comment: Festschrift in honor of the 60th birthday of Professor Vladimir Korepin (11 pages, 5 figures

    Area laws for the entanglement entropy - a review

    Full text link
    Physical interactions in quantum many-body systems are typically local: Individual constituents interact mainly with their few nearest neighbors. This locality of interactions is inherited by a decay of correlation functions, but also reflected by scaling laws of a quite profound quantity: The entanglement entropy of ground states. This entropy of the reduced state of a subregion often merely grows like the boundary area of the subregion, and not like its volume, in sharp contrast with an expected extensive behavior. Such "area laws" for the entanglement entropy and related quantities have received considerable attention in recent years. They emerge in several seemingly unrelated fields, in the context of black hole physics, quantum information science, and quantum many-body physics where they have important implications on the numerical simulation of lattice models. In this Colloquium we review the current status of area laws in these fields. Center stage is taken by rigorous results on lattice models in one and higher spatial dimensions. The differences and similarities between bosonic and fermionic models are stressed, area laws are related to the velocity of information propagation, and disordered systems, non-equilibrium situations, classical correlation concepts, and topological entanglement entropies are discussed. A significant proportion of the article is devoted to the quantitative connection between the entanglement content of states and the possibility of their efficient numerical simulation. We discuss matrix-product states, higher-dimensional analogues, and states from entanglement renormalization and conclude by highlighting the implications of area laws on quantifying the effective degrees of freedom that need to be considered in simulations.Comment: 28 pages, 2 figures, final versio
    corecore