6 research outputs found

    Ha/tcp Scaffolds Obtained By Sucrose Crystal Leaching Method: Preliminary In Vitro Evaluation

    No full text
    Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Scaffolds produced with ceramics are commonly used as bone substitute. In this work calcium phosphate materials were used to produce the scaffolds, because HA and TCP have many similarities with bone tissue. For crystalline phase analysis the scaffolds were calcined at 750 °C and sintered at 1330 °C. Electron microscopy images showed HA and TCP nanoparticles and the compounds were identified by Fourier transform infrared spectrometer. X-ray diffraction showed this material to be mostly crystalline. X-ray fluorescence identified chemical contaminants. X-ray micro computerized tomography produces tomographic images of the objects in 360°. In vitro testing was used to study cells behavior in contact with this material in a controlled environment.174811816CAPES; Fundação para a Ciência e a Tecnologia; REDE/1512/RME/2005; FCT; Fundação para a Ciência e a Tecnologia; REEQ/1062/CTM/2005; FCT; Fundação para a Ciência e a TecnologiaCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Nouri, A., Hodgson, P.D., Wen, C., Biomimetic porous titanium scaffolds for orthopedic and dental applications (2010) Biomimetics Learning from Nature, , http://dx.doi.org/10.5772/8787, Mukherjee A, editor. InTechchapt. 21Ben-Nissan, B., Milev, A., Vago, R., Morphology of sol-gel derived nano-coated coralline hydroxyapatite (2004) Biomaterials, 25 (20), pp. 4971-4975. , http://dx.doi.org/10.1016/j.biomaterials.2004.02.006, PMid:15109858Zhu, X., Eibl, O., Berthold, C., Scheideler, L., Geis-Gerstorfer, J., Structural characterization of nanocrystalline hydroxyapatite and adhesion of pre-osteoblast cells (2006) Nanotechnology, 17, pp. 2711-2721. , http://dx.doi.org/10.1088/0957-4484/17/11/001Rodrigues, L.R., D'Avila, M.A., Monteiro, F.J., Zavaglia, C.A.C., Synthesis and characterization of nanocrystalline hydroxyapatite gel and its application as scaffold aggregation (2012) Materials Research, 15 (6), pp. 974-980. , http://dx.doi.org/10.1590/S1516-14392012005000124Legeros, R.Z., Calcium phosphates in oral biology and medicine (1991) Monographs in Oral Science, 15, pp. 1-201. , PMid:1870604Guha, A.K., Singh, S., Kumaresan, R., Nayar, S., Sinha, A., Mesenchymal cell response to nanosized biphasic calcium phosphate composites (2009) Colloids and Surfaces B: Biointerfaces, 73, pp. 146-151. , http://dx.doi.org/10.1016/j.colsurfb.2009.05.009, PMid:19524412Rodrigues, P.L., De Almeida, F.S., Motisuke, M., De Sousa, E., Efeito da adição de alumina nas propriedades físicas e mecânicas do β-fosfato tricálcico (2012) Cerâmica, 58 (347), pp. 368-373. , http://dx.doi.org/10.1590/S0366-69132012000300014Zavaglia, C.A.C., Rodrigues, L.R., (2012) Processo de Obtenção de Pastilhas Porosas de Hidroxiapatita e Fosfato Tricálcico, Pastilhas Assim Obtidas e Uso Das Mesmas, , Br patent, 14 novLaranjeira, M.S., Fernandes, M.H., Monteiro, F.J., Innovative macroporous granules of nanostructured hydroxyapatite agglomerates (2010) Journal of Biomedical Materials Research Part A, 95 A (3), pp. 891-900. , http://dx.doi.org/10.1002/jbm.a.32916, PMid:20845490Associação Brasileira de Normas Técnicas - ABNT, (2003) NBR ISO 15814: Ensaio de Degradação in Vitro, , ABNTAmerican Society for Testing and Materials - ASTM, (2009) F 1185-03: Standard Specification for Composition of Hydroxyapatite for Surgical Implants, , ASTMGan, L., Pilliar, R., Calcium phosphate sol-gel-derived thin films on porous-surfaced implants for enhanced osteoconductivity. Part I: Synthesis and characterization (2004) Biomaterials, 25 (22), pp. 5303-5312. , http://dx.doi.org/10.1016/j.biomaterials.2003.12.038, PMid:15110481Chen, F., Zhu, Y.J., Zhang, K.H., Wu, J., Wang, K.W., Tang, Q., Europium-doped amorphous calcium phosphate porous nanospheres: Preparation and application as luminescent drug carriers (2011) Nanoscale Research Letters, 6 (67), pp. 1-9Wang, G., Zreiqat, H., Functional coatings or films for hard-tissue applications (2010) Materials, 3 (7), pp. 3994-4050. , http://dx.doi.org/10.3390/ma3073994Huang, X., Miao, X., Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass (2007) Journal of Biomaterials Applications, 21 (4), pp. 351-374. , http://dx.doi.org/10.1177/0885328206063905Volkmer, T.M., Lengler, F., Barreiro, O., Sousa, V.C., Dos Santos, L.A., Novel method for the obtainment of nanostructured calcium phosphate cements: Synthesis, mechanical strength and cytotoxicity (2013) Powder Technology, 235, pp. 599-605. , http://dx.doi.org/10.1016/j.powtec.2012.10.02
    corecore