8,643 research outputs found

    Solar Neutrino Data, Neutrino Magnetic Moments and Flavor Mixing

    Get PDF
    The results of all currently operating solar neutrino experiments are analyzed in the framework of the resonant neutrino spin--flavor precession scenario including the effects of neutrino mixing. Nine different profiles of the solar magnetic field are used in the calculations. It is shown that the available experimental data can be accounted for within the considered scenario. The Ga--Ge data lead to an upper limit on the neutrino mixing angle: \sin 2\theta_0 \aprle 0.25. One can discriminate between small mixing angle (\sin 2\theta_0 \aprle 0.1) and moderate mixing angle solutions by studying the solar νˉe\bar{\nu}_{e} flux which is predicted to be sizeable for moderate mixing angles. The expected signals due to νˉe\bar{\nu}_{e} in the SNO, Super--Kamiokande and Borexino experiments are calculated and found to be detectable for \sin 2\theta_0 \aprge 0.1.Comment: 16 pages, latex, 5 figures available upon request from Author

    Event generator to construct cross sections for the multiphonon excitation of a set of collective vibrational modes

    Get PDF
    The construction of differential cross sections as a function of excitation energy for systems with a collection of low- and high-lying intrinsic vibrational modes has been attempted in the past. A prescription is proposed that simplifies the implementation of such calculation schemes with a remarkable reduction in computational time.Comment: 6 pages, 3 figures, to be published in Phys. Rev.

    Non-Destructive Inspection of Impact Damage in Composite Aircraft Panels by Ultrasonic Guided Waves and Statistical Processing.

    Get PDF
    This paper discusses a non-destructive evaluation (NDE) technique for the detection of damage in composite aircraft structures following high energy wide area blunt impact (HEWABI) from ground service equipment (GSE), such as heavy cargo loaders and other heavy equipment. The test structures typically include skin, co-cured stringers, and C-frames that are bolt-connected onto the skin with shear ties. The inspection exploits the waveguide geometry of these structures by utilizing ultrasonic guided waves and a line scan approach. Both a contact prototype and a non-contact prototype were developed and tested on realistic test panels subjected to impact in the laboratory. The results are presented in terms of receiver operating characteristic curves that show excellent probability of detection with low false alarm rates for defects located in the panel skin and stringers

    Activity cycles in members of young loose stellar associations

    Get PDF
    Magnetic cycles have been detected in tens of solar-like stars. The relationship between the cycle properties and global stellar parameters is not fully understood yet. We searched for activity cycles in 90 solar-like stars with ages between 4 and 95 Myr aiming to investigate the properties of activity cycles in this age range. We measured the length PcycP_{ cyc} of a given cycle by analyzing the long-term time-series of three activity indexes. For each star, we computed also the global magnetic activity index that is proportional to the amplitude of the rotational modulation and is a proxy of the mean level of the surface magnetic activity. We detected activity cycles in 67 stars. Secondary cycles were also detected in 32 stars. The lack of correlation between PcycP_{ cyc} and ProtP_{ rot} suggest that these stars belong to the Transitional Branch and that the dynamo acting in these stars is different from the solar one. This statement is also supported by the analysis of the butterfly diagrams. We computed the Spearman correlation coefficient rSr_{ S} between PcycP_{ cyc}, and different stellar parameters. We found that PcycP_{ cyc} is uncorrelated with all the investigated parameters. The index is positively correlated with the convective turn-over time-scale, the magnetic diffusivity time-scale τdiff\tau_{ diff}, and the dynamo number DND_{ N}, whereas it is anti-correlated with the effective temperature TeffT_{ eff}, the photometric shear ΔΩphot\Delta\Omega_{\rm phot} and the radius RCR_{ C} at which the convective zone is located. We found that PcycP_{ cyc} is about constant and that decreases with the stellare age in the range 4-95 Myr. We investigated the magnetic activity of AB Dor A by merging ASAS time-series with previous long-term photometric data. We estimated the length of the AB Dor A primary cycle as Pcyc=16.78±2yrP_{ cyc} = 16.78 \pm 2 \rm yr.Comment: 19 pages , 15 figures, accepte

    Determination of rotation periods in solar-like stars with irregular sampling: the Gaia case

    Full text link
    We present a study on the determination of rotation periods (P) of solar-like stars from the photometric irregular time-sampling of the ESA Gaia mission, currently scheduled for launch in 2013, taking into account its dependence on ecliptic coordinates. We examine the case of solar-twins as well as thousands of synthetic time-series of solar-like stars rotating faster than the Sun. In the case of solar twins we assume that the Gaia unfiltered photometric passband G will mimic the variability of the total solar irradiance (TSI) as measured by the VIRGO experiment. For stars rotating faster than the Sun, light-curves are simulated using synthetic spectra for the quiet atmosphere, the spots, and the faculae combined by applying semi-empirical relationships relating the level of photospheric magnetic activity to the stellar rotation and the Gaia instrumental response. The capabilities of the Deeming, Lomb-Scargle, and Phase Dispersion Minimisation methods in recovering the correct rotation periods are tested and compared. The false alarm probability (FAP) is computed using Monte Carlo simulations and compared with analytical formulae. The Gaia scanning law makes the rate of correct detection of rotation periods strongly dependent on the ecliptic latitude (beta). We find that for P ~ 1 d, the rate of correct detection increases with ecliptic latitude from 20-30 per cent at beta ~ 0{\deg} to a peak of 70 per cent at beta=45{\deg}, then it abruptly falls below 10 per cent at beta > 45{\deg}. For P > 5 d, the rate of correct detection is quite low and for solar twins is only 5 per cent on average.Comment: 12 pages, 18 figures, accepted by MNRA

    Lower limit for differential rotation in members of young loose stellar associations

    Get PDF
    Surface differential rotation (SDR) plays a key role in dynamo models. SDR estimates are therefore essential for constraining theoretical models. We measure a lower limit to SDR in a sample of solar-like stars belonging to young associations with the aim of investigating how SDR depends on global stellar parameters in the age range (4-95 Myr). The rotation period of a solar-like star can be recovered by analyzing the flux modulation caused by dark spots and stellar rotation. The SDR and the latitude migration of dark-spots induce a modulation of the detected rotation period. We employ long-term photometry to measure the amplitude of such a modulation and to compute the quantity DeltaOmega_phot =2p/P_min -2pi/P_max that is a lower limit to SDR. We find that DeltaOmega_phot increases with the stellar effective temperature and with the global convective turn-over time-scale tau_c. We find that DeltaOmega_phot is proportional to Teff^2.18pm 0.65 in stars recently settled on the ZAMS. This power law is less steep than those found by previous authors, but closest to recent theoretical models. We find that DeltaOmega_phot steeply increases between 4 and 30 Myr and that itis almost constant between 30 and 95 Myr in a 1 M_sun star. We find also that the relative shear increases with the Rossby number Ro. Although our results are qualitatively in agreement with hydrodynamical mean-field models, our measurements are systematically higher than the values predicted by these models. The discrepancy between DeltaOmega_phot measurements and theoretical models is particularly large in stars with periods between 0.7 and 2 d. Such a discrepancy, together with the anomalous SDR measured by other authors for HD 171488 (rotating in 1.31 d), suggests that the rotation period could influence SDR more than predicted by the models.Comment: 23 pages, 15 figures, 5 tables,accepted by Astronomy and Astrophysic

    Photospheric activity, rotation and magnetic interaction in LHS 6343 A

    Full text link
    Context. The Kepler mission has recently discovered a brown dwarf companion transiting one member of the M4V+M5V visual binary system LHS 6343 AB with an orbital period of 12.71 days. Aims. The particular interest of this transiting system lies in the synchronicity between the transits of the brown dwarf C component and the main modulation observed in the light curve, which is assumed to be caused by rotating starspots on the A component. We model the activity of this star by deriving maps of the active regions that allow us to study stellar rotation and the possible interaction with the brown dwarf companion. Methods. An average transit profile was derived, and the photometric perturbations due to spots occulted during transits are removed to derive more precise transit parameters. We applied a maximum entropy spot model to fit the out-of-transit optical modulation as observed by Kepler during an uninterrupted interval of 500 days. It assumes that stellar active regions consist of cool spots and bright faculae whose visibility is modulated by stellar rotation. Results. Thanks to the extended photometric time series, we refine the determination of the transit parameters and find evidence of spots that are occulted by the brown dwarf during its transits. The modelling of the out-of-transit light curve of LHS 6343 A reveals several starspots rotating with a slightly longer period than the orbital period of the brown dwarf, i.e., 13.13 +- 0.02 days. No signature attributable to differential rotation is observed. We find evidence of a persistent active longitude on the M dwarf preceding the sub- companion point by 100 deg and lasting for at least 500 days. This can be relevant for understanding how magnetic interaction works in low-mass binary and star-planet systems.Comment: 14 pages, 16 figure
    corecore