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Event generator to construct cross sections for the multiphonon excitation
of a set of collective vibrational modes
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The construction of differential cross sections as a function of excitation energy for systems with a collection
of low- and high-lying intrinsic vibrational modes has been attempted in the past. A prescription is proposed here
that simplifies the implementation of such calculation schemes with a remarkable reduction in computational
time.
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I. INTRODUCTION

The possibility of exciting collective vibrational modes in
heavy-ion reactions has captivated the attention of researchers
in the field for several decades [1]. Of special interest has been
the challenge of extending the set of participant states (i.e.,
open channels) well beyond the familiar low-lying surface
modes and into the range of the nuclear giant resonances of
the lowest multipolarities. Because of adiabatic considerations,
these processes required, at the bombarding energies available
during the 1970s and 1980s, very short effective collision
times. Only a sharp exponential drop of the nuclear radial form
factors was able to re-create these conditions at that time, a
fact that was noted (and exploited) in the early studies of deep
inelastic collisions [2,3].

Nowadays accelerators provide much higher beam energies
and thus the population of giant resonances can also be
mediated by the Coulomb excitation mechanism. In these
circumstances the long range of the Coulomb-coupling matrix
elements forces us to incorporate—in the theoretical analyses
of the process—a considerably larger number of impact
parameters or partial waves. This, naturally, increases the
chances for exciting the high-energy part of the nuclear
response.

Historically, the multiple-phonon excitation of high-lying
modes was actively promoted as being the source of char-
acteristic structures in the experimental distribution of cross
sections as a function of excitation energy [4]. The study
of these patterns became, in turn, a quite convenient source
of information for learning about the actual features of
giant resonances (energies of the modes, widths, strengths,
anharmonicity, etc).

This link motivated an important body of recent theoretical
work [5,6] where microscopic calculations for the structural
aspects of the giant modes have been combined with standard
reaction formalisms to yield concrete predictions for the shape
of the distributions dσ/dE. Unfortunately, as stated earlier,
a much larger number of impact parameters are now needed
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to compute accurately the nuclear and Coulomb components
of the excitation processes. This, together with the fact that
there exists a distinct possibility of exciting a multiple number
of collective phonons, has resulted in rather complicated and
time-consuming coupled-channel schemes.

Upon close inspection of the results, however, one realizes
that for practically the entire range of relevant partial waves,
the excitation probabilities are very low. It is also possible
to conclude that, in leading order, the different modes can
be considered as being independent from each other. In other
words, one can ignore terms in the Hamiltonian that involve
simultaneously the coordinates of two or more collective
variables αλµ. Note that this is not the same as claiming that one
works within the perturbation limit; we have already stressed
the relevance of multistep events. Multiphonon processes may
occur as the excitation of the same mode (two phonons, three
phonons) or as the simultaneous excitation of two or more
different modes [5].

Considering the harmonic modes to be essentially uncou-
pled to each other has a significant practical advantage; it can
be exploited to design an event generator that allows for a much
simpler, yet accurate, method for constructing the differential
cross sections dσ/dE. We shall describe this idea in detail in
the following sections.

Such an approximation scheme is of course bound to fail
for the very central impact parameters. However, these partial
waves are unlikely to participate directly in the population of
the inelastic channels explicitly taken into account. Within
the semiclassical formalism their contribution is, in fact,
strongly suppressed by the global absorption associated with
the imaginary part of the optical potential. To take the grazing
impact parameters into account properly may perhaps require a
complete procedure such as the one exploited by the authors of
Ref. [5]. Note that this would be necessary, at worst, for only a
narrow window of impact parameters; for most of the relevant
range (extending up to hundreds of fermis), the method
we propose in this paper is appropriate and it is precisely
here that the major savings of computational time can be
achieved.

We elaborate further on these considerations in Sec. II,
where we also recall a previous work that proves to be quite
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essential to the development of our proposal. In Sec. III we
explain what is truly specific about the technique for generating
the folding of probabilities that we need. In Sec. IV we take, as
an example, the reaction 40Ar + 208Pb at 40 MeV per nucleon
and include two low-lying and three high-lying resonances.
The purpose is mainly to show that the function dσ/dE(E)
indeed reflects correctly the assumed input to the problem. We
reserve Sec. V for a brief summary of the contribution and
some closing remarks.

II. BRIEF BACKGROUND

A few years back we developed a general formalism for the
excitation of a single collective vibrational mode [7]. We begin
the presentation by mentioning this reference because it was
essential in motivating the present contribution. Exploiting
well-tested approximations, we were able in Ref. [7] to
propose a semiclassical prescription to estimate the dynamical
effects associated with a spreading width � of the mode.
Modifications in the predicted cross sections owing to the
presence of an eventual anharmonicity, manifested by an
apparent ratio of state energies ε,

ν = ε(2-phonon state)

ε(1-phonon state)
�= 2, (1)

were also investigated. We should mention here that the devel-
opment of this program—aiming mostly at the description of
single- and double-phonon giant resonances—was done within
the framework of perturbation theory.

Without going into detail about the implementation of
Ref. [7], let us briefly recall the input of the calculation scheme
and what is obtained as a result. Given a single collective
vibrational mode of multipolarity λ, energy h̄ωλ, width �λ,
and anharmonicity νλ, a run of the program densely sampling
impact parameters ρ within the interval [ρmin, ρmax] generated
the total differential cross section dσ/dEλ(E). The energies
of the transitions 0 → 1 phonon and 1 → 2 phonon, affected
as they are by the anharmonicity factors and spreading widths,
introduced interesting dynamical consequences that were the
main object of investigation in Ref. [7].

To construct the differential cross sections dσ/dE (E),
it was necessary to define a procedure to distribute the
probabilities of inelastic transitions for the one- and two-
phonon vibrational states over the relevant excitation energy
ranges. This prescription is quite analogous (except for its
generalization from one mode to several modes) to the one
we later use for our event generator. We can thus defer its
presentation to the next section.

The effect of the absorption was taken into account in
Ref. [7] by means of a multiplicative depletion factor that
rapidly falls to zero as the overlap between the reacting nuclei
increases for the lower impact parameters. This is—following
standard practice—constructed from an integral along the
trajectory r(t),

T (b) = exp

{
−2

h̄

∫ +∞

−∞
W (r(t ′)dt ′

}
, (2)

FIG. 1. (Color online) Treatment of absorption. Top: behavior of
T (b) as a function of the impact parameter b. Middle: excitation
probability of a single phonon is plotted as function of b for the three
states reported in the key. Bottom: functions obtained as a product of
the two preceding quantities.

of the imaginary part of the optical potential W (see, e.g.,
Ref. [8] and references therein). For the current application the
absorptive component was chosen following the prescription
in Refs. [7] and [9].

The projection into the subspace of explicitly considered
channels is now able to reverse the tendency of the second-
order amplitudes to yield too large probabilities for impact
parameters at or inside the grazing distance. Note that this
uncomfortable situation would not become obvious when
solving for coupled-channel amplitudes (even if the numerics
may be equally absurd) because of a prescribed conservation
of the norm by the integration algorithm.

The interplay between these contrasting effects can be
appreciated in Fig. 1 for the reaction 38Ar + 208Pb at 40 MeV
per nucleon. The figure shows the attenuation factor that
defines what fraction of the contribution of a given impact
parameter is actually retained in the inelastic channels. The top
graph shows the transmission coefficient T (b) as a function of
the impact parameter and puts in evidence that the transition
from T (b) ≈ 1 to T (b) ≈ 0 indeed occurs over an interval
	b that spans only a couple of fermis. The middle plot
displays the excitation probabilities as a function of the

034610-2



EVENT GENERATOR TO CONSTRUCT CROSS SECTIONS . . . PHYSICAL REVIEW C 81, 034610 (2010)

impact parameter in three situations. These are the low-lying
quadrupole mode (solid curve), the giant quadrupole resonance
(GQR; dashed curve), and a high-energy octupole resonance
(HEOR; dash-dotted curve). The lower plot corresponds to the
actual distribution dσ/db, constructed from the information
displayed in the other two plots.

III. FORMALISM

We consider a pair of reacting heavy ions that accumulate
a number N of intrinsic surface vibrational modes. Each one
is characterized by its excitation energy h̄ωi , multipolarity λi ,
strength βi , and width �i . That is,

h̄ωi, λi, βi, �i, with 1 � i � N. (3)

We proceed immediately to define two separate groups of
these modes: high- and low-lying modes. The main reason
for establishing the subdivision has to do with the way
people in the field have traditionally dealt with their widths.
The differentiation is actually an old story that dates back to
the 1970s and the use of surface vibrational models to describe
specific dynamical features of deep inelastic reactions [2,3]. It
aims to reflect two clear experimental facts.

(i) Low-lying modes (excitation energies h̄ωλ < 5–
6 MeV). At the zero- and one-phonon level, low-lying
modes are sharp and display no width. Clearly the
energy range quoted previously is only qualitative.
The modes we have in mind are those, for example,
known—in the harmonic oscillator terminology for
even multipolarities—as 	N = 0 excitations. At the
two-phonon level they show a spread that is mainly
associated with the anharmonicity of the mode. Let
us be a bit more explicit. Suppose we have a low-
lying quadrupole mode with h̄ωλ=2 ≈ 4 MeV. At about
double that excitation energy a multiplet of states 0+,
2+, and 4+ is found, spanning an interval of energy
that we call 	Eλ=2. Typically this quantity has an
order of magnitude of about 0.5 MeV. Finally, the last
piece of experimental evidence to be incorporated in
the formalism is that there are practically no known
three-phonon states associated with low-lying modes.
This can be formally done by assuming that, at the
three-phonon level, the mode assumes a width that
equals the separation energy h̄ωλ. All of these features
are best implemented by ascribing an energy-dependent
width to the mode (see the following).

(ii) High-lying modes (i.e., giant resonances). In this
situation the zero-phonon state is taken to be sharp,
while at the one-phonon level the state displays the
well-known spreading width �λ. The distribution of
the excitation amplitudes to higher levels is achieved
by a straightforward folding (see below).

The prescription that emerges from the two items listed may
appear, at first, difficult to grasp. However, it has led to practical
conclusions in the treatment of deep inelastic collisions that
are in very good agreement with the experimental evidence.
Obviously one could come up with different but somewhat

TABLE I. Width prescription as it is used in the construc-
tion of the cross section shown in Figs. 2 and 3.

nλ 0 1 2 3

High-lying 0 �
√

2�
√

3�

Low-lying 0 0 	E E

equivalent operating procedures. It is easier and reasonable,
however, to adhere to this established practice, as the details
of its implementation have already been described and tested
in the literature (see, e.g., Ref. [3]). A practical reminder of the
spreading prescription as it is applied for low- and high-lying
modes is summarized in Table I.

The event generator works in practice just like any other
similar device in a wide variety of physics subjects. We take
a given impact parameter and consider a very large number
of possible “events”, Nev. In every instance one generates
the probability of occurrence of each independent mode by
“throwing a Poisson dice” N times, in agreement with an
average number of phonons 〈ni〉. This means that the random
number generator is designed to return a number of phonons
ni for each of the independent modes consistent with the law

P (ni) = 〈ni〉ni

〈ni〉 !
exp{−〈ni〉}. (4)

The differential cross section we search for is to be
constructed for a large range of relevant impact parameters
[ρ1, ρ2], which are sampled at a uniform interval 	ρ. The
average number of phonons for the ith independent collective

FIG. 2. (Color online) Width prescription as applied to low-
and high-lying modes. The distribution of the total differential
cross section dσ/dE(E) is constructed as an example for two
separate quadrupole modes with h̄ω = 3 and 12 MeV. The different
prescriptions for low- and high-lying modes summarized in Table I
can be appreciated here. The giant quadrupole state [�(n = 1) =
5 MeV] clearly shows the second phonon, with a wide and increasing
width. The low-lying mode (	E = 1 MeV) displays, on the contrary,
a much narrower structure at the two-phonon level and has the
three-phonon structure practically washed out (not visible in the
figure). A large number of events and an impact parameter range
of 100 fm were used for this illustration.
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surface mode is previously calculated, for each impact parame-
ter ρk , using the formalism developed in Ref. [7]. These figures
are collected in an auxiliary data file that has the structure

ρ1, 〈ni=1〉, . . . , 〈ni=N 〉,
. . .

ρk, 〈ni=1〉, . . . , 〈ni=N 〉, (5)

. . .

ρ2, 〈ni=1〉, . . . , 〈ni=N 〉.
The smaller impact parameter ρ1 should be such that

any possible contribution from it is definitely eliminated by
absorption. Similarly, one should verify that contributions
from ρ > ρ2 can also be neglected.

Adding to this prepared data set the characteristic infor-
mation that specifies the different vibrational modes i, one
is ready to run the event generator and construct dσ (E)/dE.
For each impact parameter in the file, Eqs. (5), the probability
assigned to the current event is, naturally,

P =
N∏

i=1

P (ni) . (6)

It is in the energy scale that we have to be careful with the
character of the low-lying vibrational state or giant resonance
of the particular mode i. Following the prescription summa-
rized in Table I, we assign a spread �i to the contribution to the
excitation energy εi of this mode. This quantity is thus defined
as

εi = ni h̄ωi + G(0, �i), (7)

where G(0, �i) is a random number obtained from a normal
distribution with zero centroid and standard deviation �i ≈
�i/2.3. Slightly different prescriptions could once more be
obtained by replacing G with a similar type of random number
generator, but these choices are not of much consequence at
the level of approximation we have chosen to maintain.

The total excitation energy for the collection of N indepen-
dent modes is then simply given by

E =
N∑

i=1

εi . (8)

In the corresponding abscissa—in a properly designed
histogram—we accumulate a weighted version of the prob-
ability previously given in Eq. (6). The proper units for the
differential cross section as a function of energy are obtained
by multiplying that number by (20πρk	ρ)/(	ENev), where
ρk is the impact parameter sampled at this moment, and 	ρ

and 	E are the extents of the impact parameter mesh and
the energy mesh, respectively. The final result is then given
as millibarns per megaelectronvolt, and a drawing of this
histogram represents the predicted distribution of cross section
dσ (E)/dE.

To test the validity of our method, a comparison with a
more sophisticated method such as that in Ref. [5] is in order.
In this approach one starts with a Hartree-Fock plus random
phase approximation calculation in order to identify the most
collective one-phonon states. For each of these chosen states

TABLE II. Total excitation cross section (mb) calculated with the
events generator method and with the method from Ref. [5] for the
states listed in the first column.

State Events generator Ref. [5] calculations

3− 1.10 1.05
GQR 58.7 58.6
3− × 3− 0.11 ×10−3 0.10 ×10−3

GQR × GQR 0.14 ×10−1 0.14 ×10−3

one calculates the transition densities and the corresponding
form factors. These are used in a semiclassical coupled-
channel scheme to determine the excitation probabilities for
all possible one-, two-, and three-phonon states that one can
construct.

In Table II we compare some results for the two approaches.
The calculations are performed for the system 40Ca + 208Pb
at 50 MeV per nucleon. We take a simple example where
only two one-phonon states are considered as input: the low-
lying 3− state (E = 4.9 MeV) and the GQR (E = 16.9 MeV).
The range of impact parameters used in the calculations
(15–100 fm) corresponds to the peripheral region where the
Coulomb interaction yields the most important contribution.
This is also the region where the excitation probability
distribution is of a Poisson type. The results of the two methods
are very close.

So, one can envisage a calculation performed in two steps:
Make use of the method in Ref. [5] in the inner region, where
the nuclear interaction plays an important role, and then use
our novel approach in the peripheral region for large impact
parameters, which is the most time-consuming part.

Finally, we stress that in the case where one wants to take
into account the contribution of anharmonicities, our method
does not apply.

IV. APPLICATION

We now proceed to illustrate the possibilities of the
event generator with an application to the specific reaction
38Ar + 208Pb at 40 MeV per nucleon. We take two low-lying
modes (one quadrupole, one octupole) with energies h̄ω = 3
and 5 MeV, respectively, and a common value 	E = 1 MeV.
The deformation parameter assumes, for the low-lying modes,
a value β = 0.1. Three giant resonances are then added; a
dipole, a quadrupole, and an octupole mode, with energies
h̄ω = 18, 17, and 31 MeV, and widths � = 6, 6, and 8 MeV,
respectively. The effective spread of all these modes is
found in all cases following the prescriptions described in
Table I. Accumulating the cross section for a range of impact
parameters from ρmin = 12 fm to ρmax = 100 fm, in steps
of 0.5 fm, we obtain the distribution shown in Fig. 3. The
characteristics of the curve reflect the assumptions made
and, in addition, are reminiscent of what is obtained by the
time-demanding method of Ref. [5] in similar circumstances.
Just to stress the advantage of the proposed method, let us note
that one can save about two orders of magnitude in computing
time by using the event generator.
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FIG. 3. (Color online) Constructed distributions of the total
differential cross section dσ/dE(E) for the reaction 38Ar + 208Pb
at 40 MeV per nucleon. Some 108 events per impact parameter have
been generated and their contributions accumulated to construct this
figure. The calculation time is however a few minutes CPU. The
example is described in detail and the relevant parameters given in
the text of Sect. IV.

V. CONCLUDING REMARKS

The developments described and the results presented in
this report were motivated by sheer necessity. In fact, while
the complete calculations performed by Lanza et al. are very

important, the absolute times involved in the computation
of cross sections by the procedure described in Ref. [5]
are quite long. This becomes even more critical when one
takes into account that the practical implementation of such a
prescription involves a considerable amount of leeway, which
can only be sorted out by trying alternative calculations with
equally acceptable sets of parameters. This appears to be
the only sensible way to learn, by gaining experience, how
the various input numbers do indeed affect the calculated
distributions of cross sections. Even if a final presentation
with the full procedure of Ref. [5] is contemplated, a number
of previous calculations exploiting the event generator would
be—no doubt—very convenient to prepare the ground.

We consider that the use of an event generator like the one
described in these pages is highly advisable for the class of
problems that can use suggestive results to judge the soundness
of the answers they provide. Actually this should be done even
before embarking on sophisticated schemes without the proper
benefit of an educated intuition.
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