33 research outputs found

    Calibrating and adjusting expectations in life: A grounded theory on how elderly persons with somatic health problems maintain control and balance in life and optimize well-being

    Get PDF
    Aim: This study aims at exploring the main concern for elderly individuals with somatic health problems and what they do to manage this. Method: In total, 14 individuals (mean = 74.2 years; range = 68–86 years) of both gender including hospitalized and outpatient persons participated in the study. Open interviews were conducted and analyzed according to grounded theory, an inductive theory-generating method. Results: The main concern for the elderly individuals with somatic health problems was identified as their striving to maintain control and balance in life. The analysis ended up in a substantive theory explaining how elderly individuals with somatic disease were calibrating and adjusting their expectations in life in order to adapt to their reduced energy level, health problems, and aging. By adjusting the expectations to their actual abilities, the elderly can maintain a sense of that they still have the control over their lives and create stability. The ongoing adjustment process is facilitated by different strategies and result despite lower expectations in subjective well-being. The facilitating strategies are utilizing the network of important others, enjoying cultural heritage, being occupied with interests, having a mission to fulfill, improving the situation by limiting boundaries and, finally, creating meaning in everyday life. Conclusion: The main concern of the elderly with somatic health problems was to maintain control and balance in life. The emerging theory explains how elderly people with somatic health problems calibrate their expectations of life in order to adjust to reduced energy, health problems, and aging. This process is facilitated by different strategies and result despite lower expectation in subjective well-being

    New Strong-Field QED Effects at ELI: Nonperturbative Vacuum Pair Production

    Full text link
    Since the work of Sauter, and Heisenberg, Euler and K\"ockel, it has been understood that vacuum polarization effects in quantum electrodynamics (QED) predict remarkable new phenomena such as light-light scattering and pair production from vacuum. However, these fundamental effects are difficult to probe experimentally because they are very weak, and they are difficult to analyze theoretically because they are highly nonlinear and/or nonperturbative. The Extreme Light Infrastructure (ELI) project offers the possibility of a new window into this largely unexplored world. I review these ideas, along with some new results, explaining why quantum field theorists are so interested in this rapidly developing field of laser science. I concentrate on the theoretical tools that have been developed to analyze nonperturbative vacuum pair production.Comment: 20 pages, 9 figures; Key Lecture at the ELI Workshop and School on "Fundamental Physics with Ultra-High Fields", 29 Sept - 2 Oct. 2008, Frauenworth Monastery, Germany; v2: refs updated, English translations of reviews of Nikishov and Ritu

    Relativistic Laser-Matter Interaction and Relativistic Laboratory Astrophysics

    Full text link
    The paper is devoted to the prospects of using the laser radiation interaction with plasmas in the laboratory relativistic astrophysics context. We discuss the dimensionless parameters characterizing the processes in the laser and astrophysical plasmas and emphasize a similarity between the laser and astrophysical plasmas in the ultrarelativistic energy limit. In particular, we address basic mechanisms of the charged particle acceleration, the collisionless shock wave and magnetic reconnection and vortex dynamics properties relevant to the problem of ultrarelativistic particle acceleration.Comment: 58 pages, 19 figure

    Comprehensive analysis of epigenetic clocks reveals associations between disproportionate biological ageing and hippocampal volume

    Get PDF
    The concept of age acceleration, the difference between biological age and chronological age, is of growing interest, particularly with respect to age-related disorders, such as Alzheimer’s Disease (AD). Whilst studies have reported associations with AD risk and related phenotypes, there remains a lack of consensus on these associations. Here we aimed to comprehensively investigate the relationship between five recognised measures of age acceleration, based on DNA methylation patterns (DNAm age), and cross-sectional and longitudinal cognition and AD-related neuroimaging phenotypes (volumetric MRI and Amyloid-β PET) in the Australian Imaging, Biomarkers and Lifestyle (AIBL) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Significant associations were observed between age acceleration using the Hannum epigenetic clock and cross-sectional hippocampal volume in AIBL and replicated in ADNI. In AIBL, several other findings were observed cross-sectionally, including a significant association between hippocampal volume and the Hannum and Phenoage epigenetic clocks. Further, significant associations were also observed between hippocampal volume and the Zhang and Phenoage epigenetic clocks within Amyloid-β positive individuals. However, these were not validated within the ADNI cohort. No associations between age acceleration and other Alzheimer’s disease-related phenotypes, including measures of cognition or brain Amyloid-β burden, were observed, and there was no association with longitudinal change in any phenotype. This study presents a link between age acceleration, as determined using DNA methylation, and hippocampal volume that was statistically significant across two highly characterised cohorts. The results presented in this study contribute to a growing literature that supports the role of epigenetic modifications in ageing and AD-related phenotypes

    Experimental progress in positronium laser physics

    Get PDF

    Association of β-amyloid level, clinical progression and longitudinal cognitive change in normal older individuals

    Get PDF
    Objective To determine the effect of β-amyloid (Aβ) level on progression risk to mild cognitive impairment (MCI) or dementia and longitudinal cognitive change in cognitively normal (CN) older individuals. Methods All CN from the Australian Imaging Biomarkers and Lifestyle study with Aβ PET and ≥3 years follow-up were included (n = 534; age 72 ± 6 years; 27% Aβ positive; follow-up 5.3 ± 1.7 years). Aβ level was divided using the standardized 0–100 Centiloid scale: 100 CL very high, noting >25 CL approximates a positive scan. Cox proportional hazards analysis and linear mixed effect models were used to assess risk of progression and cognitive decline. Results Aβ levels in 63% were negative, 10% uncertain, 10% moderate, 14% high, and 3% very high. Fifty-seven (11%) progressed to MCI or dementia. Compared to negative Aβ, the hazard ratio for progression for moderate Aβ was 3.2 (95% confidence interval [CI] 1.3–7.6; p < 0.05), for high was 7.0 (95% CI 3.7–13.3; p < 0.001), and for very high was 11.4 (95% CI 5.1–25.8; p < 0.001). Decline in cognitive composite score was minimal in the moderate group (−0.02 SD/year, p = 0.05), while the high and very high declined substantially (high −0.08 SD/year, p < 0.001; very high −0.35 SD/year, p < 0.001). Conclusion The risk of MCI or dementia over 5 years in older CN is related to Aβ level on PET, 5% if negative vs 25% if positive but ranging from 12% if 26–50 CL to 28% if 51–100 CL and 50% if >100 CL. This information may be useful for dementia risk counseling and aid design of preclinical AD trials
    corecore