3 research outputs found

    Modelling short-rotation coppice and tree planting for urban carbon management - a citywide analysis

    Get PDF
    Ā© 2015 British Ecological Society The capacity of urban areas to deliver provisioning ecosystem services is commonly overlooked and underutilized. Urban populations have globally increased fivefold since 1950, and they disproportionately consume ecosystem services and contribute to carbon emissions, highlighting the need to increase urban sustainability and reduce environmental impacts of urban dwellers. Here, we investigated the potential for increasing carbon sequestration, and biomass fuel production, by planting trees and short-rotation coppice (SRC), respectively, in a mid-sized UK city as a contribution to meeting national commitments to reduce CO2 emissions. Iterative GIS models were developed using high-resolution spatial data. The models were applied to patches of public and privately owned urban greenspace suitable for planting trees and SRC, across the 73 km2 area of the city of Leicester. We modelled tree planting with a species mix based on the existing tree populations, and SRC with willow and poplar to calculate biomass production in new trees, and carbon sequestration into harvested biomass over 25 years. An area of 11 km2 comprising 15% of the city met criteria for tree planting and had the potential over 25 years to sequester 4200 tonnes of carbon above-ground. Of this area, 5Ā·8 km2 also met criteria for SRC planting and over the same period this could yield 71 800 tonnes of carbon in harvested biomass. The harvested biomass could supply energy to over 1566 domestic homes or 30 municipal buildings, resulting in avoided carbon emissions of 29 236 tonnes of carbon over 25 years when compared to heating by natural gas. Together with the net carbon sequestration into trees, a total reduction of 33 419 tonnes of carbon in the atmosphere could be achieved in 25 years by combined SRC and tree planting across the city. Synthesis and applications. We demonstrate that urban greenspaces in a typical UK city are underutilized for provisioning ecosystem services by trees and especially SRC, which has high biomass production potential. For urban greenspace management, we recommend that planting SRC in urban areas can contribute to reducing food-fuel conflicts on agricultural land and produce renewable energy sources close to centres of population and demand

    Mapping an urban ecosystem service: quantifying above-ground carbon storage at a city-wide scale

    Get PDF
    1. Despite urbanization being a major driver of land-use change globally, there have been few attempts to quantify and map ecosystem service provision at a city-wide scale. One service that is an increasingly important feature of climate change mitigation policies, and with other potential benefits, is biological carbon storage. 2. We examine the quantities and spatial patterns of above-ground carbon stored in a typical British city, Leicester, by surveying vegetation across the entire urban area. We also consider how carbon density differs in domestic gardens, indicative of bottom-up management of private green spaces by householders, and public land, representing top-down landscape policies by local authorities. Finally, we compare a national ecosystem service map with the estimated quantity and distribution of above-ground carbon within our study city. 3. An estimated 231 521 tonnes of carbon is stored within the above-ground vegetation of Leicester, equating to 3.16 kg C m(-2) of urban area, with 97.3% of this carbon pool being associated with trees rather than herbaceous and woody vegetation. 4. Domestic gardens store just 0.76 kg C m(-2), which is not significantly different from herbaceous vegetation landcover (0.14 kg C m(-2)). The greatest above-ground carbon density is 28.86 kg C m(-2), which is associated with areas of tree cover on publicly owned/managed sites. 5. Current national estimates of this ecosystem service undervalue Leicester's contribution by an order of magnitude. 6. Synthesis and applications. The UK government has recently set a target of an 80% reduction in greenhouse gas emissions, from 1990 levels, by 2050. Local authorities are central to national efforts to cut carbon emissions, although the reductions required at city-wide scales are yet to be set. This has led to a need for reliable data to help establish and underpin realistic carbon emission targets and reduction trajectories, along with acceptable and robust policies for meeting these goals. Here, we illustrate the potential benefits of accounting for, mapping and appropriately managing above-ground vegetation carbon stores, even within a typical densely urbanized European city
    corecore