2,706 research outputs found
Vestibular selection criteria development
The experimental elicitation of motion sickness using a short arm centrifuge or a rotating chair surrounded by a striped cylindrical enclosure failed to reveal any systematic group or consistent individual relationship between changes in heart rate, blood pressure, and body temperature and the appearance of symptoms of motion sickness. A study of the influence of vision on susceptability to motion sickness during sudden stop simulation shows that having the eyes open during any part of the sudden stop assessment is more stressful than having them closed throughout the test. Subjects were found to be highly susceptible to motion sickness when tested in free fall and in high force phases of flight. The effect of touch and pressure cues on body orientation during rotation and in parabolic flight are considered as sensory as well as motor adaptation
Pair breaking by nonmagnetic impurities in the noncentrosymmetric superconductor CePt3Si
We have studied the effect of Ge substitution and pressure on the
heavy-fermion superconductor CePt3Si. Ge substitution on the Si site acts as
negative chemical pressure leading to an increase in the unit-cell volume but
also introduces chemical disorder. We carried out electrical resistivity and ac
heat-capacity experiments under hydrostatic pressure on CePt3Si1-xGex (x=0,
0.06). Our experiments show that the suppression of superconductivity in
CePt3Si1-xGex is mainly caused by the scattering potential, rather than volume
expansion, introduced by the Ge dopants. The antiferromagnetic order is
essentially not affected by the chemical disorder.Comment: 4 pages, 4 figure
Intersensory coordination
The dependence of body orientation and body configuration perception on multiple sources of afferent and efferent information about the spatial configuration of the body and its relationship to the support and force characteristics of the surroundings is discussed
The solar flares of August 28 and 30, 1966
Observatory data correlation and evaluation on solar flares of Aug. 28 and 30, 196
Effect of hydrostatic pressure on the ambient pressure superconductor CePt_3Si
We studied the evolution of superconductivity (sc) and antiferromagnetism
(afm) in the heavy fermion compound CePt_3Si with hydrostatic pressure. We
present a pressure-temperature phase diagram established by electrical
transport measurements. Pressure shifts the superconducting transition
temperature, T_c, to lower temperatures. Antiferromagnetism is suppressed at a
critical pressure P_c=0.5 GPa.Comment: 2 pages, 2 figures, proceedings SCES'0
Radiation Rates for Low Z Impurities in Edge Plasmas
The role of impurity radiation in the reduction of heat loads on divertor
plates in present experiments such as DIII-D, JET, JT-60, ASDEX, and Alcator
C-Mod, and in planned experiments such as ITER and TPX places a new degree of
importance on the accuracy of impurity radiation emission rates for electron
temperatures below 250 eV for ITER and below 150 eV for present experiments. We
have calculated the radiated power loss using a collisional radiative model for
Be, B, C, Ne and Ar using a multiple configuration interaction model which
includes density dependent effects, as well as a very detailed treatment of the
energy levels and meta-stable levels. The "collisional radiative" effects are
very important for Be at temperatures below 10 eV. The same effects are present
for higher Z impurities, but not as strongly. For some of the lower Z elements,
the new rates are about a factor of two lower than those from a widely used,
simpler average-ion package (ADPAK) developed for high Z ions and for higher
temperatures. Following the approach of Lengyel for the case where electron
heat conduction is the dominant mechanism for heat transport along field lines,
our analysis indicates that significant enhancements of the radiation losses
above collisional radiative model rates due to such effects as rapid recycling
and charge exchange recombination will be necessary for impurity radiation to
reduce the peak heat loads on divertor plates for high heat flux experiments
such as ITER.Comment: Preprint for the 11th PSI meeting, gzipped postscript with 11
figures, 14 page
A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria.
To broadly explore mitochondrial structure and function as well as the communication of mitochondria with other cellular pathways, we constructed a quantitative, high-density genetic interaction map (the MITO-MAP) in Saccharomyces cerevisiae. The MITO-MAP provides a comprehensive view of mitochondrial function including insights into the activity of uncharacterized mitochondrial proteins and the functional connection between mitochondria and the ER. The MITO-MAP also reveals a large inner membrane-associated complex, which we term MitOS for mitochondrial organizing structure, comprised of Fcj1/Mitofilin, a conserved inner membrane protein, and five additional components. MitOS physically and functionally interacts with both outer and inner membrane components and localizes to extended structures that wrap around the inner membrane. We show that MitOS acts in concert with ATP synthase dimers to organize the inner membrane and promote normal mitochondrial morphology. We propose that MitOS acts as a conserved mitochondrial skeletal structure that differentiates regions of the inner membrane to establish the normal internal architecture of mitochondria
Recommended from our members
Generating strong shock waves with a supersonic peristaltic pump
An axially phased implosion of a cylindrical tube with a phase velocity exceeding the sound speed of the fill material acts as a peristaltic pump which drives a shock wave along the axis. The region behind the onset of the phased implosion forms a converging-diverging nozzle. When appropriately designed the flow approaches a steady state in which the shock is planar and propagates near the nozzle entrance. The steady-state flow and the approach toward it have been derived in a one-dimensional model. The steady-state nozzle flow is well characterized: uniform across the channel, simple and predictable in the axial direction. The flow in the converging section is very stable and not affected by the flow in the diverging section. These properties form the basis of an alternative shock tube design which is not limited in pressure by material strength of the tube wall. Experiments with a simple design have corroborated the theoretical predictions. A super-shock tube, in which the phased implosion is driven by high explosives, can reach extremely high pressures and energy densities. With a well characterized drive system, measurements of the steady-state shape of the nozzle can be used to determine the equation of state along an isentrope behind the axial shock. 5 refs., 4 figs
- …