9 research outputs found

    In-plane nanoelectromechanical resonators based on silicon nanowire piezoresistive detection

    Get PDF
    We report an actuation/detection scheme with a top-down nano-electromechanical system for frequency shift-based sensing applications with outstanding performance. It relies on electrostatic actuation and piezoresistive nanowire gauges for in-plane motion transduction. The process fabrication is fully CMOS compatible. The results show a very large dynamic range (DR) of more than 100dB and an unprecedented signal to background ratio (SBR) of 69dB providing an improvement of two orders of magnitude in the detection efficiency presented in the state of the art in NEMS field. Such a dynamic range results from both negligible 1/f-noise and very low Johnson noise compared to the thermomechanical noise. This simple low-power detection scheme paves the way for new class of robust mass resonant sensor

    Rôle des anticytokines dans le traitement des maladies auto-immunes

    No full text
    REIMS-BU Santé (514542104) / SudocSudocFranceF

    Lithium isotopes in marine food webs: Effect of ecological and environmental parameters

    No full text
    International audienceNon-conventional stable isotopes have received increasing attention in the past decade to investigate multi-level ecological connections from individuals to ecosystems. More recently, isotopes from trace and non-nutrient elements, potentially toxic (i.e., Hg), have also been recognized of great significance to discriminate sources, transports, and bioaccumulation, as well as trophic transfers. In contrast, lithium (Li) concentrations and its isotope compositions (δ 7 Li) remain poorly documented in aquatic ecosystems, despite its possible accumulation in marine organisms, its increasing industrial production, and its demonstrated hazardous effects on biota. Here, we present the first Li isotope investigation of various soft tissues, organs or whole organisms, from marine plankton, bivalves, cephalopods, crustaceans, and fish of different biogeographical regions [North Mediterranean Sea, North Atlantic Ocean (Bay of Biscay), South East Pacific Ocean (New Caledonia), and Southern Indian Ocean (Kerguelen Islands)]. Independently of the considered organisms, δ 7 Li values range widely, from 4.6‰ (digestive gland of bivalves) to 32.0‰ (zooplankton). Compared to homogeneous seawater (δ 7 Li ∼ 31.2‰ ± .3‰), marine organisms mostly fractionate Li isotopes in favor of the light isotope ( 6 Li). Within the same taxonomic group, significant differences are observed among organs, indicating a key role of physiology on Li concentrations and on the distribution of Li isotopes. Statistically, the trophic position is only slightly related to the average Li isotope composition of soft tissues of marine organisms, but this aspect deserves further investigation at the organ level. Other potential influences are the Li uptake by ingestion or gill ventilation. Overall, this work constitutes the first δ 7 Li extensive baseline in soft tissues of coastal organisms from different large geographic areas mostly preserved from significant anthropogenic Li contamination

    Large-scale survey of lithium concentrations in marine organisms

    No full text
    International audienceTrace metals such as Cu, Hg, and Zn have been widely investigated in marine ecotoxicological studies considering their bioaccumulation, transfer along trophic webs, and the risks they pose to ecosystems and human health. Comparatively, Li has received little attention, although this element is increasingly used in the high-tech, ceramics/glass, and medication industries. Here, we report Li concentrations in more than 400 samples, including whole organisms and different organs of bivalves, cephalopods, crustaceans, and fish. We investigated species from three contrasting biogeographic areas, i.e. temperate (Bay of Biscay, northeast Atlantic Ocean), tropical (New Caledonia, Pacific Ocean), and subpolar climates (Kerguelen Islands, southern Indian Ocean), among diverse trophic groups (filter-feeders to meso-predators) and habitats (benthic, demersal, and pelagic). Although Li is homogeneously distributed in the ocean (at 0.18 μg/mL), Li concentrations in soft tissues vary greatly, from 0.01 to 1.20 μg/g dry weight. Multiple correspondence analyses reveal two clusters of high and low Li concentrations. Li distributions in marine organisms appear to be mostly geographically independent, though our results highlight a temperature dependency in fish muscles. Li is consistently bio-reduced through the trophic webs, with filter-feeders showing the highest concentrations and predatory fish the lowest. Strong variations are observed among organs, consistent with the biochemical similarity between Na and Li during transport in the brain and in osmoregulatory organs. Fish gills and kidneys show relatively high Li concentrations (0.26 and 0.15 μg/g, respectively) and fish brains show a large range of Li contents (up to 0.34 μg/g), whereas fish liver and muscles are Li depleted (0.07 ± 0.03 and 0.06 ± 0.08 μg/g, respectively). Altogether, these results provide the first exhaustive baseline for future Li ecotoxicology studies in marine coastal environments

    Risk and benefit assessment of seafood consumption harvested from the Pertuis Charentais region of France

    No full text
    International audienceSeafood is well recognized as a major source of Long Chain n-3 Polyunsaturated Fatty Acids (LC n-3 PUFA, especially ecosapentaenoic acid, i.e. EPA and docosaheaxaenoic acid, i.e. DHA) and essential trace elements (As, Cu, Fe, Mn, Se, and Zn). It is also a source of non-essential trace elements (Ag, Cd, Hg, Pb) that can be deleterious for health even at low concentrations. Edible parts of sixteen species (fish, cephalopods, crustaceans and bivalves) of great importance in the Pertuis Charentais region, one of the main shellfish farming and fishing areas, were sampled in winter and analyzed to determine their fatty acid (FA) composition and trace element concentrations. Based on these analyses, a suite of indices was calculated to estimate risk and benefit of seafood consumption: the n-6/n-3 ratio, the atherogenic index, the thrombogenic index, the EPA + DHA daily recommended portion, as well as the maximum safe consumption. The results showed that fish contributed the most to LC n-3 PUFA supply, while bivalves and crustaceans were more beneficial in essential trace elements. Whatever the species, the concentrations of non-essential elements were not limiting for seafood consumption, as important amounts of the analyzed species can be eaten daily or weekly before becoming deleterious to consumers. Yet, concentrations of Hg in dogfish and seabass can become a concern for frequent seafood consumers (>three meals a week), confirming that varying seafood items is a key point for consumers to optimize the benefits of diverse seafood resources. Considering FA composition, whiting and pilchard are the most beneficial fish species for human diet, while surmullet was the least beneficial one. However, using an index integrating the relative risk due to Hg content, the surmullet appears as one of the most beneficial. This study provides a temporal shot of the quality of marine resources consumed in winter period in the studied area and highlights the complexity of a quantitative risk and benefit assessment with respect to the biochemical attributes of selected seafood

    Mercury in the tissues of five cephalopods species: first data on the nervous system

    No full text
    Mercury (Hg), one of the elements most toxic to biota, accumulates within organisms throughout their lifespans and biomagnifies along trophic chain. Due to their key role in marine systems, cephalopods constitute a major vector of Hg in predators. Further, they grow rapidly and display complex behaviours, which can be altered by neurotoxic Hg. This study investigated Hg concentrations within 80 cephalopod specimens sampled in the Bay of Biscay, which belonged to five species: Eledone cirrhosa, Sepia officinalis, Loligo vulgaris, Todaropsis eblanae and Illex coindetii. Hg concentrations were measured in the digestive gland, the mantle muscle and optic lobes of the brain. The digestive gland and the mantle were tissues with the most concentrated Hg among all species considered (up to 1.50 μg.g-1 dw), except E. cirrhosa. This benthic cephalopod had 1.3-fold higher Hg concentrations in the brain (up to 1.89 μg.g-1 dw) than the mantle, while other species had 2-fold lower concentrations of Hg in the brain than in the mantle. Brain-Hg concentrations can be predicted from muscle-Hg concentrations for a given species, which facilitates the assessment of Hg toxicokinetics in cephalopods. In the most contaminated E. cirrhosa individual, the chemical form of Hg in its digestive gland, mantle muscle, and optic lobes, was determined using High energy-Resolution X-ray Absorption Near Edge Structure (HR XANES) spectroscopy. In the digestive gland, 33 ± 11% of total Hg was inorganic Hg speciated as a dicysteinate complex (Hg(Cys)2), which suggested that the demethylation of dietary MeHg occurs in the organ. All Hg found in the mantle muscle and the optic lobes is methylated and bound to one cysteinyl group (MeHgCys complex), which implies that dietary MeHg is distributed to these tissues via the bloodstream. These results raised the questions regarding interspecific differences observed regarding Hg brain concentrations and the possible effect of Hg on cephalopod functional brain plasticity and behaviour
    corecore