111 research outputs found
New approaches towards sustainability of land-use systems in Tropical Brazil.
The SHIFT-Program ENV 44 tries to maintain soil fertility in the Bragantina area (Pará) by production of mulch material from fallow vegetation. A main focus with respect to sustainability deserves to be agroforestry
Commissioning and experiments with a compact transverse deflecting system at FLUTE
A Compact Transverse Deflecting System (Compact-TDS) designed for longitudinal electron bunch diagnostics in the femtosecond regime is presently undergoing commissioning at the Karlsruhe Institute of Technology (KIT). This technique, based on THz streaking using a resonator structure, demands a high level of electron beam controllability and stability at the micrometer scale. To meet these requirements, the linear accelerator FLUTE (Ferninfrarot Linac- Und Test-Experiment) has undergone major upgrades in 2023, incorporating a new RF system equipped with a klystron, RF photoinjector and solenoid magnet.
In this contribution, we present first experiments conducted with the Compact-TDS at FLUTE, utilizing the upgraded RF setup
FACT Prevents the Accumulation of Free Histones Evicted from Transcribed Chromatin and a Subsequent Cell Cycle Delay in G1
The FACT complex participates in chromatin assembly and disassembly during transcription elongation. The yeast mutants affected in the SPT16 gene, which encodes one of the FACT subunits, alter the expression of G1 cyclins and exhibit defects in the G1/S transition. Here we show that the dysfunction of chromatin reassembly factors, like FACT or Spt6, down-regulates the expression of the gene encoding the cyclin that modulates the G1 length (CLN3) in START by specifically triggering the repression of its promoter. The G1 delay undergone by spt16 mutants is not mediated by the DNA–damage checkpoint, although the mutation of RAD53, which is otherwise involved in histone degradation, enhances the cell-cycle defects of spt16-197. We reveal how FACT dysfunction triggers an accumulation of free histones evicted from transcribed chromatin. This accumulation is enhanced in a rad53 background and leads to a delay in G1. Consistently, we show that the overexpression of histones in wild-type cells down-regulates CLN3 in START and causes a delay in G1. Our work shows that chromatin reassembly factors are essential players in controlling the free histones potentially released from transcribed chromatin and describes a new cell cycle phenomenon that allows cells to respond to excess histones before starting DNA replication
Daughter-Specific Transcription Factors Regulate Cell Size Control in Budding Yeast
The asymmetric localization of cell fate determinants results in asymmetric cell cycle control in budding yeast
Relevance of genetic testing in the gene-targeted trial era: the Rostock Parkinson\u27s disease study
\ua9 The Author(s) 2024. Estimates of the spectrum and frequency of pathogenic variants in Parkinson’s disease (PD) in different populations are currently limited and biased. Furthermore, although therapeutic modification of several genetic targets has reached the clinical trial stage, a major obstacle in conducting these trials is that PD patients are largely unaware of their genetic status and, therefore, cannot be recruited. Expanding the number of investigated PD-related genes and including genes related to disorders with overlapping clinical features in large, well-phenotyped PD patient groups is a prerequisite for capturing the full variant spectrum underlying PD and for stratifying and prioritizing patients for gene-targeted clinical trials. The Rostock Parkinson’s disease (ROPAD) study is an observational clinical study aiming to determine the frequency and spectrum of genetic variants contributing to PD in a large international cohort. We investigated variants in 50 genes with either an established relevance for PD or possible phenotypic overlap in a group of 12 580 PD patients from 16 countries [62.3% male; 92.0% White; 27.0% positive family history (FH+), median age at onset (AAO) 59 years] using a next-generation sequencing panel. Altogether, in 1864 (14.8%) ROPAD participants (58.1% male; 91.0% White, 35.5% FH+, median AAO 55 years), a PD-relevant genetic test (PDGT) was positive based on GBA1 risk variants (10.4%) or pathogenic/likely pathogenic variants in LRRK2 (2.9%), PRKN (0.9%), SNCA (0.2%) or PINK1 (0.1%) or a combination of two genetic findings in two genes (∼0.2%). Of note, the adjusted positive PDGT fraction, i.e. the fraction of positive PDGTs per country weighted by the fraction of the population of the world that they represent, was 14.5%. Positive PDGTs were identified in 19.9% of patients with an AAO ≤ 50 years, in 19.5% of patients with FH+ and in 26.9% with an AAO ≤ 50 years and FH+. In comparison to the idiopathic PD group (6846 patients with benign variants), the positive PDGT group had a significantly lower AAO (4 years, P = 9
7 10−34). The probability of a positive PDGT decreased by 3% with every additional AAO year (P = 1
7 10−35). Female patients were 22% more likely to have a positive PDGT (P = 3
7 10−4), and for individuals with FH+ this likelihood was 55% higher (P = 1
7 10−14). About 0.8% of the ROPAD participants had positive genetic testing findings in parkinsonism-, dystonia/dyskinesia- or dementia-related genes. In the emerging era of gene-targeted PD clinical trials, our finding that ∼15% of patients harbour potentially actionable genetic variants offers an important prospect to affected individuals and their families and underlines the need for genetic testing in PD patients. Thus, the insights from the ROPAD study allow for data-driven, differential genetic counselling across the spectrum of different AAOs and family histories and promote a possible policy change in the application of genetic testing as a routine part of patient evaluation and care in PD
- …