80 research outputs found

    Momentum-independent magnetic excitation continuum in the honeycomb iridate H3_3LiIr2_2O6_6

    Full text link
    In the search for realizations of Quantum Spin Liquids (QSL), it is essential to understand the interplay between inherent disorder and the correlated fluctuating spin ground state. H3_3LiIr2_2O6_6 is regarded as a spin liquid proximate to the Kitaev-limit (KQSL) in which H zero-point motion and stacking faults are known to be present. Bond disorder has been invoked to account for the existence of unexpected low-energy spin excitations. Controversy remains about the nature of the underlying correlated state and if any KQSL physics survives. Here, we use resonant X-ray spectroscopies to map the collective excitations in H3_3LiIr2_2O6_6 and characterize its magnetic state. We uncover a broad bandwidth and momentum-independent continuum of magnetic excitations at low temperatures that are distinct from the paramagnetic state. The center energy and high-energy tail of the continuum are consistent with expectations for dominant ferromagnetic Kitaev interactions between dynamically fluctuating spins. The absence of a momentum dependence to these excitations indicates a broken translational invariance. Our data support an interpretation of H3_3LiIr2_2O6_6 as a disordered topological spin liquid in close proximity to bond-disordered versions of the KQSL. Our results shed light on how random disorder affects topological magnetic states and have implications for future experimental and theoretical works toward realizing the Kitaev model in condensed matter system

    Local Difference Measures between Complex Networks for Dynamical System Model Evaluation

    Get PDF
    Acknowledgments We thank Reik V. Donner for inspiring suggestions that initialized the work presented herein. Jan H. Feldhoff is credited for providing us with the STARS simulation data and for his contributions to fruitful discussions. Comments by the anonymous reviewers are gratefully acknowledged as they led to substantial improvements of the manuscript.Peer reviewedPublisher PD

    Postdialysis blood pressure rise predicts long-term outcomes in chronic hemodialysis patients: a four-year prospective observational cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The blood pressure (BP) of a proportion of chronic hemodialysis (HD) patients rises after HD. We investigated the influence of postdialysis BP rise on long-term outcomes.</p> <p>Methods</p> <p>A total of 115 prevalent HD patients were enrolled. Because of the fluctuating nature of predialysis and postdialysis BP, systolic BP (SBP) and diastolic BP before and after HD were recorded from 25 consecutive HD sessions during a 2-month period. Patients were followed for 4 years or until death or withdrawal.</p> <p>Results</p> <p>Kaplan-Meier estimates revealed that patients with average postdialysis SBP rise of more than 5 mmHg were at the highest risk of both cardiovascular and all-cause mortality as compared to those with an average postdialysis SBP change between -5 to 5 mmHg and those with an average postdialysis SBP drop of more than 5 mmHg. Furthermore, multivariate Cox regression analysis indicated that both postdialysis SBP rise of more than 5 mmHg (HR, 3.925 [95% CI, 1.410-10.846], <it>p </it>= 0.008) and high cardiothoracic (CT) ratio of more than 50% (HR, 7.560 [95% CI, 2.048-27.912], <it>p </it>= 0.002) independently predicted all-cause mortality. We also found that patients with an average postdialysis SBP rise were associated with subclinical volume overload, as evidenced by the significantly higher CT ratio (<it>p </it>= 0.008).</p> <p>Conclusions</p> <p>A postdialysis SBP rise in HD patients independently predicted 4-year cardiovascular and all-cause mortality. Considering postdialysis SBP rise was associated with higher CT ratio, intensive evaluation of cardiac and volume status should be performed in patients with postdialysis SBP rise.</p

    Quercetin and Allopurinol Ameliorate Kidney Injury in STZ-Treated Rats with Regulation of Renal NLRP3 Inflammasome Activation and Lipid Accumulation

    Get PDF
    Hyperuricemia, hyperlipidemia and inflammation are associated with diabetic nephropathy. The NLRP3 inflammasome-mediated inflammation is recently recognized in the development of kidney injury. Urate and lipid are considered as danger signals in the NLRP3 inflammasome activation. Although dietary flavonoid quercetin and allopurinol alleviate hyperuricemia, dyslipidmia and inflammation, their nephroprotective effects are currently unknown. In this study, we used streptozotocin (STZ)-induced diabetic nephropathy model with hyperuricemia and dyslipidemia in rats, and found over-expression of renal inflammasome components NLRP3, apoptosis-associated speck-like protein and Caspase-1, resulting in elevation of IL-1β and IL-18, with subsequently deteriorated renal injury. These findings demonstrated the possible association between renal NLRP3 inflammasome activation and lipid accumulation to superimpose causes of nephrotoxicity in STZ-treated rats. The treatment of quercetin and allopurinol regulated renal urate transport-related proteins to reduce hyperuricemia, and lipid metabolism-related genes to alleviate kidney lipid accumulation in STZ-treated rats. Furthermore, quercetin and allopurinol were found to suppress renal NLRP3 inflammasome activation, at least partly, via their anti-hyperuricemic and anti-dyslipidemic effects, resulting in the amelioration of STZ-induced the superimposed nephrotoxicity in rats. These results may provide a basis for the prevention of diabetes-associated nephrotoxicity with urate-lowering agents such as quercetin and allopurinol

    Sleep and immune function

    Get PDF
    Sleep and the circadian system exert a strong regulatory influence on immune functions. Investigations of the normal sleep–wake cycle showed that immune parameters like numbers of undifferentiated naïve T cells and the production of pro-inflammatory cytokines exhibit peaks during early nocturnal sleep whereas circulating numbers of immune cells with immediate effector functions, like cytotoxic natural killer cells, as well as anti-inflammatory cytokine activity peak during daytime wakefulness. Although it is difficult to entirely dissect the influence of sleep from that of the circadian rhythm, comparisons of the effects of nocturnal sleep with those of 24-h periods of wakefulness suggest that sleep facilitates the extravasation of T cells and their possible redistribution to lymph nodes. Moreover, such studies revealed a selectively enhancing influence of sleep on cytokines promoting the interaction between antigen presenting cells and T helper cells, like interleukin-12. Sleep on the night after experimental vaccinations against hepatitis A produced a strong and persistent increase in the number of antigen-specific Th cells and antibody titres. Together these findings indicate a specific role of sleep in the formation of immunological memory. This role appears to be associated in particular with the stage of slow wave sleep and the accompanying pro-inflammatory endocrine milieu that is hallmarked by high growth hormone and prolactin levels and low cortisol and catecholamine concentrations

    Micromechanical Properties of Injection-Molded Starch–Wood Particle Composites

    Get PDF
    The micromechanical properties of injection molded starch–wood particle composites were investigated as a function of particle content and humidity conditions. The composite materials were characterized by scanning electron microscopy and X-ray diffraction methods. The microhardness of the composites was shown to increase notably with the concentration of the wood particles. In addition,creep behavior under the indenter and temperature dependence were evaluated in terms of the independent contribution of the starch matrix and the wood microparticles to the hardness value. The influence of drying time on the density and weight uptake of the injection-molded composites was highlighted. The results revealed the role of the mechanism of water evaporation, showing that the dependence of water uptake and temperature was greater for the starch–wood composites than for the pure starch sample. Experiments performed during the drying process at 70°C indicated that the wood in the starch composites did not prevent water loss from the samples.Peer reviewe
    corecore