7,252 research outputs found

    An optically actuated surface scanning probe

    Get PDF
    We demonstrate the use of an extended, optically trapped probe that is capable of imaging surface topography with nanometre precision, whilst applying ultra-low, femto-Newton sized forces. This degree of precision and sensitivity is acquired through three distinct strategies. First, the probe itself is shaped in such a way as to soften the trap along the sensing axis and stiffen it in transverse directions. Next, these characteristics are enhanced by selectively position clamping independent motions of the probe. Finally, force clamping is used to refine the surface contact response. Detailed analyses are presented for each of these mechanisms. To test our sensor, we scan it laterally over a calibration sample consisting of a series of graduated steps, and demonstrate a height resolution of ∼ 11 nm. Using equipartition theory, we estimate that an average force of only ∼ 140 fN is exerted on the sample during the scan, making this technique ideal for the investigation of delicate biological samples

    Differing associations of BMI and body fat with asthma and lung function in children.

    No full text
    Current evidence suggests that in children there is a significant, albeit weak, association between asthma and obesity. Studies generally use body mass index (BMI) in evaluating body adiposity, but there are limitations to its use.Children from a population-based study attending follow-up (age 11 years) were weighed, measured and had percent body (PBF) and truncal (PTF) fat assessed using bioelectrical impedance. They were skin prick tested and completed spirometry. Parents completed a validated respiratory questionnaire. Children were defined as normal or overweight according to BMI and PBF cut-offs. We tested the association between these adiposity markers with wheeze, asthma, atopy, and lung-function.Six hundred forty-six children (339 male) completed follow-up. BMI z-score, PBF, and PTF were all positively associated with current wheeze (odds ratio [95% CI]: 1.27 [1.03, 1.57], P = 0.03; 1.05 [1.00, 1.09], P = 0.03; 1.04 [1.00, 1.08], P = 0.04, respectively). Similar trends were seen with asthma. However, when examining girls and boys separately, significant positive associations were found with PBF and PTF and asthma but only in girls (gender interaction P = 0.06 and 0.04, respectively). Associations between being overweight and wheezing and asthma were stronger when overweight was defined by PBF (P = 0.007, 0.03) than BMI (P > 0.05). Higher BMI was significantly associated with an increase in FEV(1) and FVC, but only in girls. Conversely, increasing body fat (PBF and PTF) was associated with reduced FEV(1) and FVC, but only in boys. No associations between adiposity and atopy were found.All adiposity measures were associated with wheeze, asthma, and lung function. However, BMI and PBF did not have the same effects and girls and boys appear to be affected differently

    Advances in Hyaluronan Biology: Signaling, Regulation, and Disease Mechanisms

    Get PDF
    Hyaluronan is an extracellular glycosaminoglycan polymer consisting of linear disaccharide units containing alternating glucuronate and N-acetylglucosamine.Many cell types make hyaluronan, which unlike most other macromolecules is assembled at the plasmamembrane and concurrently translocated through the hyaluronan synthase enzyme. The normal function of large hyaluronan polymers (\u3e1MDa) in tissue cushioning, hydration, and lubrication is well established. The aberrant accumulation and degradation of hyaluronan and the receptor-mediated signaling of smaller hyaluronan fragments have also been extensively implicated in a variety of pathological states including inflammation and cancer. More recently, the discovery that hyaluronan can either be a structural matrix component or appear as smaller processed polymers and oligomers that differentially engage a diverse range of signaling receptors has created an exciting paradigm shift and reenergized hyaluronan research in a broad range of fields. In this special issue, eight review articles focus on summarizing the latest contributions to understanding hyaluronan synthesis and catabolism and the regulation of hyaluronan functions. Seven novel primary research articles also investigate multiple roles of hyaluronan in disease progression and targeting

    Coastal Tropical Convection in a Stochastic Modeling Framework

    Full text link
    Recent research has suggested that the overall dependence of convection near coasts on large-scale atmospheric conditions is weaker than over the open ocean or inland areas. This is due to the fact that in coastal regions convection is often supported by meso-scale land-sea interactions and the topography of coastal areas. As these effects are not resolved and not included in standard cumulus parametrization schemes, coastal convection is among the most poorly simulated phenomena in global models. To outline a possible parametrization framework for coastal convection we develop an idealized modeling approach and test its ability to capture the main characteristics of coastal convection. The new approach first develops a decision algorithm, or trigger function, for the existence of coastal convection. The function is then applied in a stochastic cloud model to increase the occurrence probability of deep convection when land-sea interactions are diagnosed to be important. The results suggest that the combination of the trigger function with a stochastic model is able to capture the occurrence of deep convection in atmospheric conditions often found for coastal convection. When coastal effects are deemed to be present the spatial and temporal organization of clouds that has been documented form observations is well captured by the model. The presented modeling approach has therefore potential to improve the representation of clouds and convection in global numerical weather forecasting and climate models.Comment: Manuscript submitted for publication in Journal of Advances in Modeling Earth System

    Probing the nuclear obscuration in radio-galaxies with near infrared imaging

    Get PDF
    We present the first near-infrared (K'-band) homogeneous observations of a complete sub-sample of the 3CR radio catalogue comprising all High Excitation Galaxies (HEGs) at z<0.3. After showing that the surface brightness decomposition technique to measure central point-like sources is affected by significant uncertainties for the objects in the studied sample, we present a new, more accurate method based on the R-K' color profile. Via this method we find a substantial nuclear K'-band excess in all but two HEGs -- most likely directly associated to their nuclear emission -- and we measure the corresponding 2.12 μ\mum nuclear luminosities. Within the frame of the unification scheme for radio-loud active galactic nuclei, it appears that obscuration alone is not able to account for the different nuclear properties of the majority of the HEGs and Broad Line Radio Galaxies (BLRGs), and also scattering of the (optically) hidden nuclear light from a compact region must be invoked. More precisely, for ~70% of the HEGs the observed point-like optical emission is dominated by the scattered component, while in the K'-band both scattered and direct light passing through the torus contribute to the observed nuclear luminosity. The estimated fraction of scattered light ranges from a few tenths to a few percent, while the torus extinction is between 15<A_{V,torus}<50 mag with only a few exceptions with lower obscuration.Comment: Accepted for publication in A&A; high resolution version can be downloaded at http://www.astro.yale.edu/danilom

    Mindfulness-based stress reduction in Parkinson’s disease: a systematic review

    Get PDF
    Background: Mindfulness based stress reduction (MBSR) is increasingly being used to improve outcomes such as stress and depression in a range of long-term conditions (LTCs). While systematic reviews on MBSR have taken place for a number of conditions there remains limited information on its impact on individuals with Parkinson’s disease (PD). Methods: Medline, Central, Embase, Amed, CINAHAL were searched in March 2016. These databases were searched using a combination of MeSH subject headings where available and keywords in the title and abstracts. We also searched the reference lists of related reviews. Study quality was assessed based on questions from the Cochrane Collaboration risk of bias tool. Results: Two interventions and three papers with a total of 66 participants were included. The interventions were undertaken in Belgium (n = 27) and the USA (n = 39). One study reported significantly increased grey matter density (GMD) in the brains of the MBSR group compared to the usual care group. Significant improvements were reported in one study for a number of outcomes including PD outcomes, depression, mindfulness, and quality of life indicators. Only one intervention was of reasonable quality and both interventions failed to control for potential confounders in the analysis. Adverse events and reasons for drop-outs were not reported. There was also no reporting on the costs/benefits of the intervention or how they affected health service utilisation. Conclusion: This systematic review found limited and inconclusive evidence of the effectiveness of MBSR for PD patients. Both of the included interventions claimed positive effects for PD patients but significant outcomes were often contradicted by other results. Further trials with larger sample sizes, control groups and longer follow-ups are needed before the evidence for MBSR in PD can be conclusively judged

    Shape-induced force fields in optical trapping

    Get PDF
    Advances in optical tweezers, coupled with the proliferation of two-photon polymerization systems, mean that it is now becoming routine to fabricate and trap non-spherical particles. The shaping of both light beams and particles allows fine control over the flow of momentum from the optical to mechanical regimes. However, understanding and predicting the behaviour of such systems is highly complex in comparison with the traditional optically trapped microsphere. In this Article, we present a conceptually new and simple approach based on the nature of the optical force density. We illustrate the method through the design and fabrication of a shaped particle capable of acting as a passive force clamp, and we demonstrate its use as an optically trapped probe for imaging surface topography. Further applications of the design rules highlighted here may lead to new sensors for probing biomolecule mechanics, as well as to the development of optically actuated micromachines
    corecore