Advances in Hyaluronan Biology: Signaling, Regulation, and Disease Mechanisms

Abstract

Hyaluronan is an extracellular glycosaminoglycan polymer consisting of linear disaccharide units containing alternating glucuronate and N-acetylglucosamine.Many cell types make hyaluronan, which unlike most other macromolecules is assembled at the plasmamembrane and concurrently translocated through the hyaluronan synthase enzyme. The normal function of large hyaluronan polymers (\u3e1MDa) in tissue cushioning, hydration, and lubrication is well established. The aberrant accumulation and degradation of hyaluronan and the receptor-mediated signaling of smaller hyaluronan fragments have also been extensively implicated in a variety of pathological states including inflammation and cancer. More recently, the discovery that hyaluronan can either be a structural matrix component or appear as smaller processed polymers and oligomers that differentially engage a diverse range of signaling receptors has created an exciting paradigm shift and reenergized hyaluronan research in a broad range of fields. In this special issue, eight review articles focus on summarizing the latest contributions to understanding hyaluronan synthesis and catabolism and the regulation of hyaluronan functions. Seven novel primary research articles also investigate multiple roles of hyaluronan in disease progression and targeting

    Similar works