21 research outputs found

    How to Train Your Dragon: Harnessing Gamma Delta T Cells Antiviral Functions and Trained Immunity in a Pandemic Era.

    Get PDF
    The emergence of viruses with pandemic potential such as the SARS-CoV-2 coronavirus causing COVID-19 poses a global health challenge. There is remarkable progress in vaccine technology in response to this threat, but their design often overlooks the innate arm of immunity. Gamma Delta (γδ) T cells are a subset of T cells with unique features that gives them a key role in the innate immune response to a variety of homeostatic alterations, from cancer to microbial infections. In the context of viral infection, a growing body of evidence shows that γδ T cells are particularly equipped for early virus detection, which triggers their subsequent activation, expansion and the fast deployment of antiviral functions such as direct cytotoxic pathways, secretion of cytokines, recruitment and activation of other immune cells and mobilization of a trained immunity memory program. As such, γδ T cells represent an attractive target to stimulate for a rapid and effective resolution of viral infections. Here, we review the known aspects of γδ T cells that make them crucial component of the immune response to viruses, and the ways that their antiviral potential can be harnessed to prevent or treat viral infection

    Bacillus Calmette-Guerin (BCG) induces superior anti-tumour responses by Vδ2 + T-cells compared to the aminobisphosphonate drug Zoledronic acid.

    Get PDF
    Vδ2 + T-cells can recognise malignantly transformed cells as well as those infected with mycobacteria. This cross-reactivity supports the idea of using mycobacteria to manipulate Vδ2 + T-cells in cancer immunotherapy. To date, therapeutic interventions using Vδ2 + T-cells in cancer have involved expanding these cells in or ex vivo using zoledronic acid (ZA). Here, we show that the mycobacterium Bacillus Calmette-Guérin (BCG) also causes Vδ2 + T-cell expansion in vitro and that resulting Vδ2 + cell populations are cytotoxic towards tumour cell lines. We show that both ZA and BCG-expanded Vδ2+ cells effectively killed both Daudi and THP-1 cells. THP-1 cell killing by both ZA and BCG-expanded Vδ2+ cells was enhanced by treatment of targets cells with ZA. Although no difference in cytotoxic activity between ZA- and BCG-expanded Vδ2+ cells was observed, BCG-expanded cells degranulated more and produced a more diverse range of cytokines upon tumour cell recognition compared to ZA-expanded cells. ZA-expanded Vδ2+ cells were shown to upregulate exhaustion marker CD57 to a greater extent than BCG-expanded Vδ2+ cells. Furthermore, ZA expansion was associated with upregulation of inhibitory markers PD-1 and TIM3 in a dose-dependent manner whereas PD-1 expression was not increased following expansion using BCG. Intradermal BCG vaccination of rhesus macaques caused in vivo expansion of Vδ2 + cells. In combination with the aforementioned in vitro data, this finding suggests that BCG treatment could induce expansion of Vδ2 + T-cells with enhanced anti-tumour potential compared to ZA treatment and that either ZA or BCG could be used intratumourally as a means to potentiate stronger anti-tumour Vδ2 + T-cell responses
    corecore