1,451 research outputs found

    Three Dimensional Electrical Impedance Tomography

    Get PDF
    The electrical resistivity of mammalian tissues varies widely and is correlated with physiological function. Electrical impedance tomography (EIT) can be used to probe such variations in vivo, and offers a non-invasive means of imaging the internal conductivity distribution of the human body. But the computational complexity of EIT has severe practical limitations, and previous work has been restricted to considering image reconstruction as an essentially two-dimensional problem. This simplification can limit significantly the imaging capabilities of EIT, as the electric currents used to determine the conductivity variations will not in general be confined to a two-dimensional plane. A few studies have attempted three-dimensional EIT image reconstruction, but have not yet succeeded in generating images of a quality suitable for clinical applications. Here we report the development of a three-dimensional EIT system with greatly improved imaging capabilities, which combines our 64-electrode data-collection apparatus with customized matrix inversion techniques. Our results demonstrate the practical potential of EIT for clinical applications, such as lung or brain imaging and diagnostic screening

    Estimation of current density distribution under electrodes for external defibrillation

    Get PDF
    BACKGROUND: Transthoracic defibrillation is the most common life-saving technique for the restoration of the heart rhythm of cardiac arrest victims. The procedure requires adequate application of large electrodes on the patient chest, to ensure low-resistance electrical contact. The current density distribution under the electrodes is non-uniform, leading to muscle contraction and pain, or risks of burning. The recent introduction of automatic external defibrillators and even wearable defibrillators, presents new demanding requirements for the structure of electrodes. METHOD AND RESULTS: Using the pseudo-elliptic differential equation of Laplace type with appropriate boundary conditions and applying finite element method modeling, electrodes of various shapes and structure were studied. The non-uniformity of the current density distribution was shown to be moderately improved by adding a low resistivity layer between the metal and tissue and by a ring around the electrode perimeter. The inclusion of openings in long-term wearable electrodes additionally disturbs the current density profile. However, a number of small-size perforations may result in acceptable current density distribution. CONCLUSION: The current density distribution non-uniformity of circular electrodes is about 30% less than that of square-shaped electrodes. The use of an interface layer of intermediate resistivity, comparable to that of the underlying tissues, and a high-resistivity perimeter ring, can further improve the distribution. The inclusion of skin aeration openings disturbs the current paths, but an appropriate selection of number and size provides a reasonable compromise

    Overview of Plasma Lens Experiments and Recent Results at SPARC_LAB

    Get PDF
    Beam injection and extraction from a plasma module is still one of the crucial aspects to solve in order to produce high quality electron beams with a plasma accelerator. Proper matching conditions require to focus the incoming high brightness beam down to few microns size and to capture a high divergent beam at the exit without loss of beam quality. Plasma-based lenses have proven to provide focusing gradients of the order of kT/m with radially symmetric focusing thus promising compact and affordable alternative to permanent magnets in the design of transport lines. In this paper an overview of recent experiments and future perspectives of plasma lenses is reported

    The small GTPase Rab29 is a common regulator of immune synapse assembly and ciliogenesis

    Get PDF
    Acknowledgements We wish to thank Jorge Galán, Gregory Pazour, Derek Toomre, Giuliano Callaini, Joel Rosenbaum, Alessandra Boletta and Francesco Blasi for generously providing reagents and for productive discussions, and Sonia Grassini for technical assistance. The work was carried out with the financial support of Telethon (GGP11021) and AIRC.Peer reviewedPostprin

    Exercise therapy in adults with serious mental illness: a systematic review and meta-analysis

    Get PDF
    Background: Individuals with serious mental illness are at a higher risk of physical ill health. Mortality rates are at least twice those of the general population with higher levels of cardiovascular disease, metabolic disease, diabetes, and respiratory illness. Although genetics may have a role in the physical health problems of these patients, lifestyle and environmental factors such as levels of smoking, obesity, poor diet, and low levels of physical activity also play a prominent part.<p></p> Objective: To conduct a systematic review and meta-analysis of randomised controlled trials comparing the effect of exercise interventions on individuals with serious mental illness.<p></p> Methods: Searches were made in Ovid MEDLINE, Embase, CINAHL, PsycINFO, Biological Abstracts on Ovid, and The Cochrane Library (January 2009, repeated January 2013) through to February 2013.<p></p> Results: Eight RCTs were identified in the systematic search. Six compared exercise versus usual care. One study assessed the effect of a cycling programme versus muscle strengthening and toning exercises. The final study compared the effect of adding specific exercise advice and motivational skills to a simple walking programme. Exercise programmes were noted by their heterogeneity in terms of the type of exercise intervention, setting, and outcome measures. The review found that exercise improved levels of exercise activity (n=13, standard mean difference [SMD] 1.81, CI 0.44 to 3.18, p = 0.01). No beneficial effect was found on negative (n = 84, SMD = -0.54, CI -1.79 to 0.71, p = 0.40) or positive symptoms of schizophrenia (n = 84, SMD = -1.66, CI -3.78 to 0.45, p = 0.12). No change was found on body mass index compared with usual care (n= 151, SMD = -0.24, CI -0.56 to 0.08, p = 0.14), or body weight (n = 77, SMD = 0.13, CI -0.32 to 0.58, p = 0.57). No beneficial effect was found on anxiety and depressive symptoms (n = 94, SMD = -0.26, CI -0.91 to 0.39, p = 0.43), or quality of life in respect of physical and mental domains. One RCT measured the effect of exercise on exercise intensity, attendance, and persistence at a programme. No significant effect was found on these measures.<p></p> Conclusions: This systematic review showed that exercise therapies can lead to a modest increase in levels of exercise activity but overall there was no noticeable change for symptoms of mental health, body mass index, and body weight.<p></p&gt

    Effect of Contour Shape of Nervous System Electromagnetic Stimulation Coils on the Induced Electrical Field Distribution

    Get PDF
    BACKGROUND: Electromagnetic stimulation of the nervous system has the advantage of reduced discomfort in activating nerves. For brain structures stimulation, it has become a clinically accepted modality. Coil designs usually consider factors such as optimization of induced power, focussing, field shape etc. In this study we are attempting to find the effect of the coil contour shape on the electrical field distribution for magnetic stimulation. METHOD AND RESULTS: We use the maximum of the induced electric field stimulation in the region of interest as the optimization criterion. This choice required the application of the calculus of variation, with the contour perimeter taken as a pre-set condition. Four types of coils are studied and compared: circular, square, triangular and an 'optimally' shaped contour. The latter yields higher values of the induced electrical field in depths up to about 30 mm, but for depths around 100 mm, the circular shape has a slight advantage. The validity of the model results was checked by experimental measurements in a tank with saline solution, where differences of about 12% were found. In view the accuracy limitations of the computational and measurement methods used, such differences are considered acceptable. CONCLUSION: We applied an optimization approach, using the calculus of variation, which allows to obtain a coil contour shape corresponding to a selected criterion. In this case, the optimal contour showed higher intensities for a longer line along the depth-axis. The method allows modifying the induced field structure and focussing the field to a selected zone or line
    corecore