3,630 research outputs found

    Characterization of Contractile Forces Generated by Stretch Marks Fibroblasts: In Vitro Study

    Get PDF
    Abstract: Authors present a study about the contraction forces observed in striae distensae fibroblasts (SMF) in a collagen scaffold. Collagen lattices were used to study the mechanical behavior of SDF within the collagen matrix compared to the lattices produced using the healthy skin derived fibroblasts (NSF). A Forcebox device was used to measure the contractile forces. Striae Rubrae fibroblast’s contractile force was by 28% greater than that generated by the NSF and striae albae fibroblasts (P<0.05). Anomalies and especially differences in forces generated by SMF were observed through all our experiments. These findings complete and corroborate the results and information published in our previous studies. Level of Evidence V: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266

    Structural, electronic, and hyperfine properties of pure and Ta-doped m-ZrO₂

    Get PDF
    A combination of experiments and ab initio quantum-mechanical calculations has been applied to examine electronic, structural, and hyperfine interactions in pure and Ta-doped zirconium dioxide in its monoclinic phase (m-ZrO₂). From the theoretical point of view, the full-potential linear augmented plane wave plus local orbital (APW + lo) method was applied to treat the electronic structure of the doped system including the atomic relaxations introduced by the impurities in the host in a fully self-consistent way using a supercell approach. Different charge states of the Ta impurity were considered in the study and its effects on the electronic, structural, and hyperfine properties are discussed. Our results suggest that two different charge states coexist in Ta-doped m-ZrO₂. Further, ab initio calculations predict that depending on the impurity charge state, a sizeable magnetic moment can be induced at the Ta-probe site. This prediction is confirmed by a new analysis of experimental data

    Coexistence Of Different Charge States In Ta-Doped Monoclinic HfF₂: Theoretical And Experimental Approaches

    Get PDF
    A combination of experiments and ab initio quantum-mechanical calculations has been applied to examine hyperfine interactions in Ta-doped hafnium dioxide. Although the properties of monoclinic HfO₂ have been the subject of several earlier studies, some aspects remain open. In particular, time differential perturbed angular correlation spectroscopy studies using Ta-181 as probe atom revealed the coexistence of two hyperfine interactions in this material but an explanation was only given for the more populated one. Until now, no models have been proposed that explain the second interaction, and it has not yet been associated with a specific crystallographic site. In this work, a detailed study of the different charge states for the impurity-probe atom (Ta) was performed in order to understand the second interaction observed in Ta-doped monoclinic HfO2. The combination of experiments and theory suggests that two different charge states coexist in this compound. Further, ab initio calculations predict that, depending on the impurity charge state, a sizeable magnetic moment can be induced at the probe site. This is confirmed by a new analysis of experimental data

    Striae Distensae: In Vitro Study and Assessment of Combined Treatment With Sodium Ascorbate and Platelet-Rich Plasma on Fibroblasts

    Get PDF
    Introduction: Striae distensae (SD) appear clinically as parallel striae, lying perpendicular to the tension lines of the skin. SD evolve into two clinical phases, an initial inflammatory phase in which they are called “striae rubrae” (SR) and a chronic phase in which they are called striae albae (SA). Fibroblasts seem to play a key role in the pathogenesis of stretch marks. This study was aimed at describing and analyzing stretch marks-derived fibroblasts (SMF), the differences between SR- and SA-derived fibroblasts (SRF, SAF), testing two treatments in vitro (sodium ascorbate and PrP) on SAF. Material and Methods: To characterize the SMF, the expression of alpha smooth muscle actin (alpha SMA) was investigated. Type I collagen expression was measured in SAF, before and after adding different PrP concentrations and sodium ascorbate in the culture medium. Results were processed through statistical analysis models using the Student’s t-test. Results: A significant increase in alpha SMA (P <0.001) was observed in SRF. SAF treated with PrP and sodium ascorbate showed a resumption of their metabolic activity by an increase in collagen type I production and cell proliferation. After 24 h of incubation with PrP 1% and PrP 5% + sodium ascorbate, cell viability was increased by 140% and 151% and by 156 and 178% after 48 h, respectively, compared to the control. Conclusion: Our study shows that a biologically mediated improvement in SMF metabolic activity is possible. Our promising results require further trials to be able to confirm the reproducibility of this combined treatment, particularly in vivo. No Level Assigned: This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable

    Anisotropic relaxations introduced by Cd impurities in rutile TiO₂: first-principles calculations and experimental support

    Get PDF
    We present an ab initio study of the relaxationsintroduced in TiO₂ when a Cd impurity substitutes a Ti atom and an experimental testof this calculation by a perturbed-angular-correlation (PAC) measurement ofthe orientation of the electric-field gradient (EFG) tensor at the Cd site. The ab initio calculation predicts strong anisotropicrelaxations of the nearest oxygen neighbors of the impurity and a change ofthe orientation of the largest EFG tensor component, V₃₃, from the [001] to the [110] direction upon substitution of a Ti atom by a Cd impurity.The last prediction is confirmed by the PAC experiment that shows that V₃₃ at the Cd site is parallel to either the [110] or the [110] crystal axis.Facultad de Ciencias Exacta

    Assessment of Patient Satisfaction Using a New Augmented Reality Simulation Software for Breast Augmentation: A Prospective Study

    Get PDF
    Background: Breast augmentation is one of the most frequently performed plastic surgery procedures. Providing patients with realistic 3D simulations of breast augmentation outcomes is becoming increasingly common. Until recently, such programs were expensive and required significant equipment, training, and office space. New simple user-friendly programs have been developed, but to date there remains a paucity of objective evidence comparing these 3D simulations with post-operative outcomes. The aim of this study is to assess the aesthetic similarity between a preoperative 3D simulation generated using Arbrea breast simulation software and real post-operative outcomes, with a focus on patient satisfaction. Methods: The authors conducted a prospective study of patients requiring breast augmentation. Patients were asked to assess how realistic the simulation was compared to the one-year post-operative result using the authors’ grading scale for breast augmentation simulation assessment. Patient satisfaction with the simulations was assessed using a satisfaction visual analogue scale (VAS) ranging from 0 (not at all satisfied) to 10 (very satisfied). Patient satisfaction with the surgical outcome was assessed using the BREAST-Q Augmentation Module. Results: All patients were satisfied with the simulations and with the attained breast volume, with a mean VAS score of 8.2   1.2. The mean simulation time took 90 s on average. The differences between the pre-operative and one-year post-operative values of the three BREAST-Q assessments were found to be statistically significant (p &lt; 0.001). Conclusions: Three-dimensional simulation is becoming increasingly common in pre-operative planning for breast augmentation. The present study aimed to assess the degree of similarity of three-dimensional simulations generated using Arbrea Breast Software and found that the use of the software provided a very satisfying representation for patients undergoing breast augmentation. However, we recommend informing patients that only the volume simulation is extremely accurate. On the other hand, it is necessary to not guarantee an absolute correspondence regarding the breast shape between the simulation and the post-operative result

    Multiple ATR-Chk1 Pathway Proteins Preferentially Associate with Checkpoint-Inducing DNA Substrates

    Get PDF
    The ATR-Chk1 DNA damage checkpoint pathway is a critical regulator of the cellular response to DNA damage and replication stress in human cells. The variety of environmental, chemotherapeutic, and carcinogenic agents that activate this signal transduction pathway do so primarily through the formation of bulky adducts in DNA and subsequent effects on DNA replication fork progression. Because there are many protein-protein and protein-DNA interactions proposed to be involved in activation and/or maintenance of ATR-Chk1 signaling in vivo, we systematically analyzed the association of a number of ATR-Chk1 pathway proteins with relevant checkpoint-inducing DNA structures in vitro. These DNA substrates included single-stranded DNA, branched DNA, and bulky adduct-containing DNA. We found that many checkpoint proteins show a preference for single-stranded, branched, and bulky adduct-containing DNA in comparison to undamaged, double-stranded DNA. We additionally found that the association of checkpoint proteins with bulky DNA damage relative to undamaged DNA was strongly influenced by the ionic strength of the binding reaction. Interestingly, among the checkpoint proteins analyzed the checkpoint mediator proteins Tipin and Claspin showed the greatest differential affinity for checkpoint-inducing DNA structures. We conclude that the association and accumulation of multiple checkpoint proteins with DNA structures indicative of DNA damage and replication stress likely contribute to optimal ATR-Chk1 DNA damage checkpoint responses

    NF-ÎșB-direct activation of microRNAs with repressive effects on monocyte-specific genes is critical for osteoclast differentiation

    Get PDF
    Monocyte-to-osteoclast conversion is a unique terminal differentiation process that is exacerbated in rheumatoid arthritis and bone metastasis. The mechanisms implicated in upregulating osteoclast-specific genes involve transcription factors, epigenetic regulators and microRNAs (miRNAs). It is less well known how downregulation of osteoclast-inappropriate genes is achieved. RESULTS: In this study, analysis of miRNA expression changes in osteoclast differentiation from human primary monocytes revealed the rapid upregulation of two miRNA clusters, miR-212/132 and miR-99b/let-7e/125a. We demonstrate that they negatively target monocyte-specific and immunomodulatory genes like TNFAIP3, IGF1R and IL15. Depletion of these miRNAs inhibits osteoclast differentiation and upregulates their targets. These miRNAs are also upregulated in other inflammatory monocytic differentiation processes. Most importantly, we demonstrate for the first time the direct involvement of Nuclear Factor kappa B (NF-ÎșB) in the regulation of these miRNAs, as well as with their targets, whereby NF-ÎșB p65 binds the promoters of these two miRNA clusters and NF-ÎșB inhibition or depletion results in impaired upregulation of their expression. CONCLUSIONS:Our results reveal the direct involvement of NF-ÎșB in shutting down certain monocyte-specific genes, including some anti-inflammatory activities, through a miRNA-dependent mechanism for proper osteoclast differentiation
    • 

    corecore