402 research outputs found

    When Do People Trust Their Social Groups?

    Full text link
    Trust facilitates cooperation and supports positive outcomes in social groups, including member satisfaction, information sharing, and task performance. Extensive prior research has examined individuals' general propensity to trust, as well as the factors that contribute to their trust in specific groups. Here, we build on past work to present a comprehensive framework for predicting trust in groups. By surveying 6,383 Facebook Groups users about their trust attitudes and examining aggregated behavioral and demographic data for these individuals, we show that (1) an individual's propensity to trust is associated with how they trust their groups, (2) smaller, closed, older, more exclusive, or more homogeneous groups are trusted more, and (3) a group's overall friendship-network structure and an individual's position within that structure can also predict trust. Last, we demonstrate how group trust predicts outcomes at both individual and group level such as the formation of new friendship ties.Comment: CHI 201

    Posttraumatic Stress Disorder Prevalence and Risk of Recurrence in Acute Coronary Syndrome Patients: A Meta-analytic Review

    Get PDF
    BACKGROUND:Acute coronary syndromes (ACS; myocardial infarction or unstable angina) can induce posttraumatic stress disorder (PTSD), and ACS-induced PTSD may increase patients' risk for subsequent cardiac events and mortality. OBJECTIVE:To determine the prevalence of PTSD induced by ACS and to quantify the association between ACS-induced PTSD and adverse clinical outcomes using systematic review and meta-analysis. DATA SOURCES:Articles were identified by searching Ovid MEDLINE, PsycINFO, and Scopus, and through manual search of reference lists. METHODOLOGY/PRINCIPAL FINDINGS:Observational cohort studies that assessed PTSD with specific reference to an ACS event at least 1 month prior. We extracted estimates of the prevalence of ACS-induced PTSD and associations with clinical outcomes, as well as study characteristics. We identified 56 potentially relevant articles, 24 of which met our criteria (N = 2383). Meta-analysis yielded an aggregated prevalence estimate of 12% (95% confidence interval [CI], 9%-16%) for clinically significant symptoms of ACS-induced PTSD in a random effects model. Individual study prevalence estimates varied widely (0%-32%), with significant heterogeneity in estimates explained by the use of a screening instrument (prevalence estimate was 16% [95% CI, 13%-20%] in 16 studies) vs a clinical diagnostic interview (prevalence estimate was 4% [95% CI, 3%-5%] in 8 studies). The aggregated point estimate for the magnitude of the relationship between ACS-induced PTSD and clinical outcomes (ie, mortality and/or ACS recurrence) across the 3 studies that met our criteria (N = 609) suggested a doubling of risk (risk ratio, 2.00; 95% CI, 1.69-2.37) in ACS patients with clinically significant PTSD symptoms relative to patients without PTSD symptoms. CONCLUSIONS/SIGNIFICANCE:This meta-analysis suggests that clinically significant PTSD symptoms induced by ACS are moderately prevalent and are associated with increased risk for recurrent cardiac events and mortality. Further tests of the association of ACS-induced PTSD and clinical outcomes are needed

    Fostering implementation of health services research findings into practice: a consolidated framework for advancing implementation science

    Get PDF
    Abstract Background Many interventions found to be effective in health services research studies fail to translate into meaningful patient care outcomes across multiple contexts. Health services researchers recognize the need to evaluate not only summative outcomes but also formative outcomes to assess the extent to which implementation is effective in a specific setting, prolongs sustainability, and promotes dissemination into other settings. Many implementation theories have been published to help promote effective implementation. However, they overlap considerably in the constructs included in individual theories, and a comparison of theories reveals that each is missing important constructs included in other theories. In addition, terminology and definitions are not consistent across theories. We describe the Consolidated Framework For Implementation Research (CFIR) that offers an overarching typology to promote implementation theory development and verification about what works where and why across multiple contexts. Methods We used a snowball sampling approach to identify published theories that were evaluated to identify constructs based on strength of conceptual or empirical support for influence on implementation, consistency in definitions, alignment with our own findings, and potential for measurement. We combined constructs across published theories that had different labels but were redundant or overlapping in definition, and we parsed apart constructs that conflated underlying concepts. Results The CFIR is composed of five major domains: intervention characteristics, outer setting, inner setting, characteristics of the individuals involved, and the process of implementation. Eight constructs were identified related to the intervention (e.g., evidence strength and quality), four constructs were identified related to outer setting (e.g., patient needs and resources), 12 constructs were identified related to inner setting (e.g., culture, leadership engagement), five constructs were identified related to individual characteristics, and eight constructs were identified related to process (e.g., plan, evaluate, and reflect). We present explicit definitions for each construct. Conclusion The CFIR provides a pragmatic structure for approaching complex, interacting, multi-level, and transient states of constructs in the real world by embracing, consolidating, and unifying key constructs from published implementation theories. It can be used to guide formative evaluations and build the implementation knowledge base across multiple studies and settings.http://deepblue.lib.umich.edu/bitstream/2027.42/78272/1/1748-5908-4-50.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78272/2/1748-5908-4-50-S1.PDFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78272/3/1748-5908-4-50-S3.PDFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78272/4/1748-5908-4-50-S4.PDFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78272/5/1748-5908-4-50.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/78272/6/1748-5908-4-50-S2.PDFPeer Reviewe

    Estimating food production in an urban landscape

    Get PDF
    There is increasing interest in urban food production for reasons of food security, environmental sustainability, social and health benefits. In developed nations urban food growing is largely informal and localised, in gardens, allotments and public spaces, but we know little about the magnitude of this production. Here we couple own-grown crop yield data with garden and allotment areal surveys and urban fruit tree occurrence to provide one of the first estimates for current and potential food production in a UK urban setting. Current production is estimated to be sufficient to supply the urban population with fruit and vegetables for about 30 days per year, while the most optimistic model results suggest that existing land cultivated for food could supply over half of the annual demand. Our findings provide a baseline for current production whilst highlighting the potential for change under the scaling up of cultivation on existing land

    Inhibition of Atrogin-1/MAFbx Mediated MyoD Proteolysis Prevents Skeletal Muscle Atrophy In Vivo

    Get PDF
    Ubiquitin ligase Atrogin1/Muscle Atrophy F-box (MAFbx) up-regulation is required for skeletal muscle atrophy but substrates and function during the atrophic process are poorly known. The transcription factor MyoD controls myogenic stem cell function and differentiation, and seems necessary to maintain the differentiated phenotype of adult fast skeletal muscle fibres. We previously showed that MAFbx mediates MyoD proteolysis in vitro. Here we present evidence that MAFbx targets MyoD for degradation in several models of skeletal muscle atrophy. In cultured myotubes undergoing atrophy, MAFbx expression increases, leading to a cytoplasmic-nuclear shuttling of MAFbx and a selective suppression of MyoD. Conversely, transfection of myotubes with sh-RNA-mediated MAFbx gene silencing (shRNAi) inhibited MyoD proteolysis linked to atrophy. Furthermore, overexpression of a mutant MyoDK133R lacking MAFbx-mediated ubiquitination prevents atrophy of mouse primary myotubes and skeletal muscle fibres in vivo. Regarding the complex role of MyoD in adult skeletal muscle plasticity and homeostasis, its rapid suppression by MAFbx seems to be a major event leading to skeletal muscle wasting. Our results point out MyoD as the second MAFbx skeletal muscle target by which powerful therapies could be developed

    In-orbit aerodynamic coefficient measurements using SOAR (Satellite for Orbital Aerodynamics Research)

    Get PDF
    The Satellite for Orbital Aerodynamics Research (SOAR) is a CubeSat mission, due to be launched in 2021, to investigate the interaction between different materials and the atmospheric flow regime in very low Earth orbits (VLEO). Improving knowledge of the gas–surface interactions at these altitudes and identification of novel materials that can minimise drag or improve aerodynamic control are important for the design of future spacecraft that can operate in lower altitude orbits. Such satellites may be smaller and cheaper to develop or can provide improved Earth observation data or communications link-budgets and latency. In order to achieve these objectives, SOAR features two payloads: (i) a set of steerable fins which provide the ability to expose different materials or surface finishes to the oncoming flow with varying angle of incidence whilst also providing variable geometry to investigate aerostability and aerodynamic control; and (ii) an ion and neutral mass spectrometer with time-of-flight capability which enables accurate measurement of the in-situ flow composition, density, velocity. Using precise orbit and attitude determination information and the measured atmospheric flow characteristics the forces and torques experienced by the satellite in orbit can be studied and estimates of the aerodynamic coefficients calculated. This paper presents the scientific concept and design of the SOAR mission. The methodology for recovery of the aerodynamic coefficients from the measured orbit, attitude, and in-situ atmospheric data using a least-squares orbit determination and free-parameter fitting process is described and the experimental uncertainty of the resolved aerodynamic coefficients is estimated. The presented results indicate that the combination of the satellite design and experimental methodology are capable of clearly illustrating the variation of drag and lift coefficient for differing surface incidence angle. The lowest uncertainties for the drag coefficient measurement are found at approximately 300 km, whilst the measurement of lift coefficient improves for reducing orbital altitude to 200 km

    The benefits of very low earth orbit for earth observation missions

    Get PDF
    Very low Earth orbits (VLEO), typically classified as orbits below approximately 450 km in altitude, have the potential to provide significant benefits to spacecraft over those that operate in higher altitude orbits. This paper provides a comprehensive review and analysis of these benefits to spacecraft operations in VLEO, with parametric investigation of those which apply specifically to Earth observation missions. The most significant benefit for optical imaging systems is that a reduction in orbital altitude improves spatial resolution for a similar payload specification. Alternatively mass and volume savings can be made whilst maintaining a given performance. Similarly, for radar and lidar systems, the signal-to-noise ratio can be improved. Additional benefits include improved geospatial position accuracy, improvements in communications link-budgets, and greater launch vehicle insertion capability. The collision risk with orbital debris and radiation environment can be shown to be improved in lower altitude orbits, whilst compliance with IADC guidelines for spacecraft post-mission lifetime and deorbit is also assisted. Finally, VLEO offers opportunities to exploit novel atmosphere-breathing electric propulsion systems and aerodynamic attitude and orbit control methods. However, key challenges associated with our understanding of the lower thermosphere, aerodynamic drag, the requirement to provide a meaningful orbital lifetime whilst minimising spacecraft mass and complexity, and atomic oxygen erosion still require further research. Given the scope for significant commercial, societal, and environmental impact which can be realised with higher performing Earth observation platforms, renewed research efforts to address the challenges associated with VLEO operations are required

    A review of gas-surface interaction models for orbital aerodynamics applications

    Get PDF
    Renewed interest in Very Low Earth Orbits (VLEO) - i.e. altitudes below 450 km - has led to an increased demand for accurate environment characterisation and aerodynamic force prediction. While the former requires knowledge of the mechanisms that drive density variations in the thermosphere, the latter also depends on the interactions between the gas-particles in the residual atmosphere and the surfaces exposed to the flow. The determination of the aerodynamic coefficients is hindered by the numerous uncertainties that characterise the physical processes occurring at the exposed surfaces. Several models have been produced over the last 60 years with the intent of combining accuracy with relatively simple implementations. In this paper the most popular models have been selected and reviewed using as discriminating factors relevance with regards to orbital aerodynamics applications and theoretical agreement with gas-beam experimental data. More sophisticated models were neglected, since their increased accuracy is generally accompanied by a substantial increase in computation times which is likely to be unsuitable for most space engineering applications. For the sake of clarity, a distinction was introduced between physical and scattering kernel theory based gas-surface interaction models. The physical model category comprises the Hard Cube model, the Soft Cube model and the Washboard model, while the scattering kernel family consists of the Maxwell model, the Nocilla-Hurlbut-Sherman model and the Cercignani-Lampis-Lord model. Limits and assets of each model have been discussed with regards to the context of this paper. Wherever possible, comments have been provided to help the reader to identify possible future challenges for gas-surface interaction science with regards to orbital aerodynamic applications

    Advancing a Conceptual Model of Evidence-Based Practice Implementation in Public Service Sectors

    Get PDF
    Implementation science is a quickly growing discipline. Lessons learned from business and medical settings are being applied but it is unclear how well they translate to settings with different historical origins and customs (e.g., public mental health, social service, alcohol/drug sectors). The purpose of this paper is to propose a multi-level, four phase model of the implementation process (i.e., Exploration, Adoption/Preparation, Implementation, Sustainment), derived from extant literature, and apply it to public sector services. We highlight features of the model likely to be particularly important in each phase, while considering the outer and inner contexts (i.e., levels) of public sector service systems
    corecore