103 research outputs found

    Detecting User’s Behavior Shift with Sensorized Shoes and Stigmergic Perceptrons

    Get PDF
    As populations become increasingly aged, health monitoring has gained increasing importance. Recent advances in engineering of sensing, processing and artificial learning, make the development of non-invasive systems able to observe changes over time possible. In this context, the Ki-Foot project aims at developing a sensorized shoe and a machine learning architecture based on computational stigmergy to detect small variations in subjects gait and to learn and detect users behaviour shift. This paper outlines the challenges in the field and summarizes the proposed approach. The machine learning architecture has been developed and publicly released after early experimentation, in order to foster its application on real environments

    Dynamic Gesture Recognition Using a Smart Glove in Hand-Assisted Laparoscopic Surgery

    Get PDF
    This paper presents a methodology for movement recognition in hand-assisted laparoscopic surgery using a textile-based sensing glove. The aim is to recognize the commands given by the surgeon’s hand inside the patient’s abdominal cavity in order to guide a collaborative robot. The glove, which incorporates piezoresistive sensors, continuously captures the degree of flexion of the surgeon’s fingers. These data are analyzed throughout the surgical operation using an algorithm that detects and recognizes some defined movements as commands for the collaborative robot. However, hand movement recognition is not an easy task, because of the high variability in the motion patterns of different people and situations. The data detected by the sensing glove are analyzed using the following methodology. First, the patterns of the different selected movements are defined. Then, the parameters of the movements for each person are extracted. The parameters concerning bending speed and execution time of the movements are modeled in a prephase, in which all of the necessary information is extracted for subsequent detection during the execution of the motion. The results obtained with 10 different volunteers show a high degree of precision and recall

    Rapid In Situ Detection of THC and CBD in Cannabis sativa L. by 1064 nm Raman Spectroscopy

    Get PDF
    The need to find a rapid and worthwhile technique for the in situ detection of the content of delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) in Cannabis sativa L. is an ever-increasing problem in the forensic field. Among all the techniques for the detection of cannabinoids, Raman spectroscopy can be identified as the most cost-effective, fast, noninvasive, and nondestructive. In this study, 42 different samples were analyzed using Raman spectroscopy with 1064 nm excitation wavelength. The use of an IR wavelength laser showed the possibility to clearly identify THC and CBD in fresh samples, without any further processing, knocking out the contribution of the fluorescence generated by visible and near-IR sources. The results allow assigning all the Raman features in THC- and CBD-rich natural samples. The multivariate analysis underlines the high reproducibility of the spectra and the possibility to distinguish immediately the Raman spectra of the two cannabinoid species. Furthermore, the ratio between the Raman bands at 1295/1440 and 1623/1663 cm-1 is identified as an immediate test parameter to evaluate the THC content in the samples

    An Overview of Recent Strategies in Pathogen Sensing

    Get PDF
    Pathogenic bacteria are one of the major concerns in food industries and water treatment facilities because of their rapid growth and deleterious effects on human health. The development of fast and accurate detection and identification systems for bacterial strains has long been an important issue to researchers. Although confirmative for the identification of bacteria, conventional methods require time-consuming process involving either the test of characteristic metabolites or cellular reproductive cycles. In this paper, we review recent sensing strategies based on micro- and nano-fabrication technology. These technologies allow for a great improvement of detection limit, therefore, reduce the time required for sample preparation. The paper will be focused on newly developed nano- and micro-scaled biosensors, novel sensing modalities utilizing microfluidic lab-on-a-chip, and array technology for the detection of pathogenic bacteria

    Seasonal variations in pore water and sediment geochemistry of littoral lake sediments (Asylum Lake, MI, USA)

    Get PDF
    BACKGROUND: Seasonal changes in pore water and sediment redox geochemistry have been observed in many near-surface sediments. Such changes have the potential to strongly influence trace metal distribution and thus create seasonal fluctuations in metal mobility and bioavailability. RESULTS: Seasonal trends in pore water and sediment geochemistry are assessed in the upper 50 cm of littoral kettle lake sediments. Pore waters are always redox stratified, with the least compressed redox stratification observed during fall and the most compressed redox stratification observed during summer. A 2-step sequential sediment extraction yields much more Fe in the first step, targeted at amorphous Fe(III) (hydr)oxides (AEF), then in the second step, which targets Fe(II) monosulfides. Fe extracted in the second step is relatively invariant with depth or season. In contrast, AEF decreases with sediment depth, and is seasonally variable, in agreement with changes in redox stratification inferred from pore water profiles. A 5-step Tessier extraction scheme was used to assess metal association with operationally-defined exchangeable, carbonate, iron and manganese oxide (FMO), organic/sulfide and microwave-digestible residual fractions in cores collected during winter and spring. Distribution of metals in these two seasons is similar. Co, As, Cd, and U concentrations approach detection limits. Fe, Cu and Pb are mostly associated with the organics/sulfides fraction. Cr and Zn are mostly associated with FMO. Mn is primarily associated with carbonates, and Co is nearly equally distributed between the FMO and organics/sulfide fractions. CONCLUSION: This study clearly demonstrates that near-surface lake sediment pore water redox stratification and associated solid phase geochemistry vary significantly with season. This has important ramifications for seasonal changes in the bioavailability and mobility of trace elements. Without rate measurements, it is not possible to quantify the contribution of various processes to natural organic matter degradation. However, the pore water and solid phase data suggest that iron reduction and sulfate reduction are the dominant pathways in the upper 50 cm of these sediments

    ANDES, the high resolution spectrograph for the ELT: science case, baseline design and path to construction

    Get PDF

    MAORY: adaptive optics module for the E-ELT

    Get PDF
    MAORY is one of the four instruments for the E-ELT approved for construction. It is an adaptive optics module offering two compensation modes: multi-conjugate and single-conjugate adaptive optics. The project has recently entered its phase B. A system-level overview of the current status of the project is given in this paper

    Kinetics and Equilibria of Nickel(II)-Schiff Base Adducts Formation

    No full text
    The interactions between Ni-II cations and bidentate Schiff base ligands, N-alkyl-5-X-salicylaldimine HL (X = H; R = Et, nPr, tBu; X = Cl, OMe, NO2; R = nPr), and bis(N-n-alkyl-5-X-salicylaldiminato)nickel(II) complexes [NiL2] (X = H; R = Et, nPr, nBu; X = Cl, OMe, Me; R = nPr) were investigated by UV/Vis spectrophotometry in acetonitrile. The kinetics for the formation of Ni-II/HL 1:1 adducts was studied by stopped-flow techniques, which showed that the process followed a two-consecutive mechanism, Experimental evidence and theoretical calculations indicated the formation of an unidentate intermediate in the first step, according to a dissociative interchange mechanism. Ring-closure occurs in the second step and its rate is slower for electron-withdrawing-substituted Schiff bases. Nickel(II) cations interact with [NiL2] affording [NiL](+) and [Ni2L3](+) species; the associated equilibrium constants were found to be related to the electronic effects of the 5-X ligand substituents
    corecore