20 research outputs found

    A Critical Role of a Cellular Membrane Traffic Protein in Poliovirus RNA Replication

    Get PDF
    Replication of many RNA viruses is accompanied by extensive remodeling of intracellular membranes. In poliovirus-infected cells, ER and Golgi stacks disappear, while new clusters of vesicle-like structures form sites for viral RNA synthesis. Virus replication is inhibited by brefeldin A (BFA), implicating some components(s) of the cellular secretory pathway in virus growth. Formation of characteristic vesicles induced by expression of viral proteins was not inhibited by BFA, but they were functionally deficient. GBF1, a guanine nucleotide exchange factor for the small cellular GTPases, Arf, is responsible for the sensitivity of virus infection to BFA, and is required for virus replication. Knockdown of GBF1 expression inhibited virus replication, which was rescued by catalytically active protein with an intact N-terminal sequence. We identified a mutation in GBF1 that allows growth of poliovirus in the presence of BFA. Interaction between GBF1 and viral protein 3A determined the outcome of infection in the presence of BFA

    Engineered Picornavirus VPg-RNA Substrates: Analysis of a Tyrosyl-RNA Phosphodiesterase Activity

    Get PDF
    Using poliovirus, the prototypic member of Picornaviridae, we have further characterized a host cell enzymatic activity found in uninfected cells, termed β€œunlinkase,” that recognizes and cleaves the unique 5β€² tyrosyl-RNA phosphodiester bond found at the 5β€² end of picornavirus virion RNAs. This bond connects VPg, a viral-encoded protein primer essential for RNA replication, to the viral RNA; it is cleaved from virion RNA prior to its engaging in protein synthesis as mRNA. Due to VPg retention on nascent RNA strands and replication templates, but not on viral mRNA, we hypothesize that picornaviruses utilize unlinkase activity as a means of controlling the ratio of viral RNAs that are translated versus those that either serve as RNA replication templates or are encapsidated. To test our hypothesis and further characterize this enzyme, we have developed a novel assay to detect unlinkase activity. We demonstrate that unlinkase activity can be detected using this assay, that this unique activity remains unchanged over the course of a poliovirus infection in HeLa cells, and that unlinkase activity is unaffected by the presence of exogenous VPg or anti-VPg antibodies. Furthermore, we have determined that unlinkase recognizes and cleaves a human rhinovirus-poliovirus chimeric substrate with the same efficiency as the poliovirus substrate

    Location of the Glycoprotein in the Membrane of Sindbis Virus

    No full text

    A Host-Specific, Temperature-Sensitive Translation Defect Determines the Attenuation Phenotype of a Human Rhinovirus/Poliovirus Chimera, PV1(RIPO) β–Ώ

    No full text
    By using a rhinosvirus/poliovirus type 1 chimera, PV1(RIPO), with the cognate internal ribosome entry site (IRES) of human rhinovirus type 2 (HRV2), we set out to shed light on the mechanism by which this variant expresses its attenuated phenotype in poliovirus-sensitive, CD155 transgenic (tg) mice and cynomolgus monkeys. Here we report that replication of PV1(RIPO) is restricted not only in human cells of neuronal origin, as was reported previously, but also in cells of murine origin at physiological temperature. This block in replication was enhanced at 39.5Β°C but, remarkably, it was absent at 33Β°C. PV1(RIPO) variants that overcame the replication block were derived by serial passage under restrictive conditions in either mouse cells or human neuronal cells. All adapting mutations mapped to the 5β€²-nontranslated region of PV1(RIPO). Variants selected in mouse cells, but not in human neuronal cells, exhibited increased mouse neurovirulence in vivo. The observed strong mouse-specific defect of PV1(RIPO) at nonpermissive temperature correlated with the translational activity of the HRV2 IRES in this chimeric virus. These unexpected results must be kept in mind when poliovirus variants are tested in CD155 tg mice for their neurovirulent potential, particularly in assays of live attenuated oral poliovirus vaccine lots. Virulence may be masked by adverse species-specific conditions in mouse cells that may not allow accurate prediction of neurovirulence in the human host. Thus, novel poliovirus variants in line for possible development of human vaccines must be tested in nonhuman primates
    corecore