2,258 research outputs found

    Total organic carbon, total nitrogen and chemical characteristics of an haplic cambisol after biochar incorporation

    Get PDF
    Biochar has been used as a soil conditioner to increase the soil organic carbon content and to improve the soil chemical characteristics. However, the effect of biochar on soil is still not clear and the soil type and biochar composition should also play an important role. In this context, the main objective of this work was to evaluate the effect of biochar application on the organic carbon (C) content and on chemical characteristics of subtropical Cambisol. The field experiment was located at the State University of Centro ‐ Oeste in Irati, Brazil, and the soil was classified as an Haplic Cambisol (Embrapa, 1999). The applied biochar was composed mainly by fine residues ( 70% < 2mm ) of an eucalyptus biochar that was a waste of the local steel industry. In February 2010, four increasing doses of biochar were applied to the soil (T1 ‐ 0 t ha ‐ 1 ; T2 ‐ 10 t ha ‐ 1 ; T3 ‐ 20 t ha ‐ 1 and T4 ‐ 40 t ha ‐ 1 ) with four replicates. Soil samples were composed by three subsamples collected within each plot. Biochar was applied on the soil surface and thereafter it was incorporated into a 0 ‐ 10 cm soil depth with an harrow. Soil samples were collected in September 2011 at four soil depths: 0 ‐ 5; 5 ‐ 10; 10 ‐ 20 and 20 ‐ 30 cm. The samples were air dried and passed through a 2 mm sieve. Soil C and nitrogen (N) contents were determined by dry combustion and the soil characteristics assessed were: pH in water, available P, exchangeable K, Ca, Mg and Al, potential acidity (H + Al), cation exchange capacity (CEC), effective cation exchange capacity (ECEC) and base saturation (V%) (Tedesco et al., 1995). The mean values were compared using SAS software (Tukey 10%). The main alterations in soil characteristics were observed in the superficial depth (0 ‐ 5 cm) (Table 1) probably due to the permanence of the biochar fine particles at the soil surface. In this layer, the application of 40 t ha ‐ 1 of biochar (treatment T4) increased in 15.5 g kg ‐ 1 the C content in comparison to treatment T1. The treatments T2 and T3 also increased the C content, but the differences were not significant. N content was not affected by biochar application. The highest dose of biochar (treatment T4) promoted an increase of the C/N ratio from 12 to 16 at the 0 ‐ 5 cm depth. Treatment T4 also increased the soil pH value in comparison to treatment T1. In addition, the contents of available P, exchangeable K and Ca where higher under treatment T4 in comparison to treatment T1 (Table 1). In opposition, exchangeable Mg content, Al+H, V% and CEC were not altered by any treatment, but T4 increased the ECEC in 3.1 cmol c dm ‐ 3 in comparison to T1. The results observed are probably due the high C and ash (26,5%) contents of biochar. A contribution of the functional groups on the surface of the biochar to the ECEC should not be excluded (Sparkes & Stoutjesdijk, 2011). Our results indicate that after two years of biochar application an increase of soil organic carbon and a positive impact on the soil chemical characteristics at the soil surface were attained, but only with the highest tested dose (40 t ha ‐ 1 ) .Peer reviewe

    Pentoxifylline, tocopherol, and sequestrectomy are effective for the management of advanced osteoradionecrosis of the jaws—a case series

    Get PDF
    Background: The aim of the present study was to evaluate the efficacy of pentoxifylline and tocopherol for the management of osteoradionecrosis of the jaws. / Methods: Twenty-five patients diagnosed with osteoradionecrosis of the jaws treated with pentoxifylline 400 mg + tocopherol 400 mg three times daily (tid) were evaluated. Clinical records and image tests were reviewed. All patients were previously submitted to head and neck radiation therapy and presented with a clinical and radiographic diagnosis of osteoradionecrosis of the jaws. / Results: Following therapy with pentoxifylline and tocopherol, 76% (19/25) of the patients showed complete mucosal healing, in which 47.3% (9/19) did not undergo sequestrectomy. From this particular group, 77.7% (7/9) were in stage I and 33.3% (3/9) used the protocol for up to 3 months. Among those who underwent to sequestrectomy, complete mucosal healing was observed in 52.7% (10/19). Among these, 60% (6/10) were in stage I and 100% of the patients were using the protocol for more than 3 months. In all other patients, partial healing of the mucosa was observed since they presented advanced disease. These represented 24% of the sample (6/25), 66.6% (4/6) were in stage III, and 60% (4/6) used the protocol for over 6 months. / Conclusion: Pentoxifylline and tocopherol may provide effective management of osteoradionecrosis of the jaws, and the association with sequestrectomy may avoid major surgical procedures

    Search for CP violation in D0 and D+ decays

    Get PDF
    A high statistics sample of photoproduced charm particles from the FOCUS (E831) experiment at Fermilab has been used to search for CP violation in the Cabibbo suppressed decay modes D+ to K-K+pi+, D0 to K-K+ and D0 to pi-pi+. We have measured the following CP asymmetry parameters: A_CP(K-K+pi+) = +0.006 +/- 0.011 +/- 0.005, A_CP(K-K+) = -0.001 +/- 0.022 +/- 0.015 and A_CP(pi-pi+) = +0.048 +/- 0.039 +/- 0.025 where the first error is statistical and the second error is systematic. These asymmetries are consistent with zero with smaller errors than previous measurements.Comment: 12 pages, 4 figure

    A Study of D0 --> K0(S) K0(S) X Decay Channels

    Full text link
    Using data from the FOCUS experiment (FNAL-E831), we report on the decay of D0D^0 mesons into final states containing more than one KS0K^0_S. We present evidence for two Cabibbo favored decay modes, D0KS0KS0Kπ+D^0\to K^0_SK^0_S K^- \pi^+ and D0KS0KS0K+πD^0\to K^0_SK^0_S K^+ \pi^-, and measure their combined branching fraction relative to D0Kˉ0π+πD^0\to \bar{K} ^0\pi^+\pi^- to be Γ(D0KS0KS0K±π)Γ(D0Kˉ0π+π)\frac{\Gamma(D^0\to K^0_SK^0_SK^{\pm}\pi^{\mp})}{\Gamma(D^0\to \bar{K} ^0\pi^+\pi^-)} = 0.0106 ±\pm 0.0019 ±\pm 0.0010. Further, we report new measurements of Γ(D0KS0KS0KS0)Γ(D0Kˉ0π+π)\frac{\Gamma(D^0\to K^0_SK^0_SK^0_S)}{\Gamma(D^0\to \bar{K} ^0\pi^+\pi^-)} = 0.0179 ±\pm 0.0027 ±\pm 0.0026, Γ(D0K0Kˉ0)Γ(D0Kˉ0π+π)\frac{\Gamma(D^0\to K^0\bar{K} ^0)}{\Gamma(D^0\to \bar{K} ^0\pi^+\pi^-)} = 0.0144 ±\pm 0.0032 ±\pm 0.0016, and Γ(D0KS0KS0π+π)Γ(D0Kˉ0π+π)\frac{\Gamma(D^0\to K^0_SK^0_S\pi^+\pi^-)}{\Gamma(D^0\to \bar{K} ^0\pi^+\pi^-)} = 0.0208 ±\pm 0.0035 ±\pm 0.0021 where the first error is statistical and the second is systematic.Comment: 11 pages, 3 figures, typos correcte
    corecore