47 research outputs found

    Sensitivity on Earth Core and Mantle densities using Atmospheric Neutrinos

    Get PDF
    Neutrino radiography may provide an alternative tool to study the very deep structures of the Earth. Though these measurements are unable to resolve the fine density layer features, nevertheless the information which can be obtained are independent and complementary to the more conventional seismic studies. The aim of this paper is to assess how well the core and mantle averaged densities can be reconstructed through atmospheric neutrino radiography. We find that about a 2% sensitivity for the mantle and 5% for the core could be achieved for a ten year data taking at an underwater km^3 Neutrino Telescope. This result does not take into account systematics related to the details of the experimental apparatus.Comment: 11 pages, 11 figures, accepted for publication in JCA

    Neutrino Telescopes' Sensitivity to Dark Matter

    Full text link
    The nature of the dark matter of the Universe is yet unknown and most likely is connected with new physics. The search for its composition is under way through direct and indirect detection. Fundamental physical aspects such as energy threshold, geometry and location are taken into account to investigate proposed neutrino telescopes of km^3 volume sensitivities to dark matter. These sensitivities are just sufficient to test a few WIMP scenarios. Telescopes of km^3 volume, such as IceCube, can definitely discover or exclude superheavy (M > 10^10 GeV) Strong Interacting Massive Particles (Simpzillas). Smaller neutrino telescopes such as ANTARES, AMANDA-II and NESTOR can probe a large region of the Simpzilla parameter space.Comment: 28 pages, 9 figure

    Geotomography with solar and supernova neutrinos

    Get PDF
    We show how by studying the Earth matter effect on oscillations of solar and supernova neutrinos inside the Earth one can in principle reconstruct the electron number density profile of the Earth. A direct inversion of the oscillation problem is possible due to the existence of a very simple analytic formula for the Earth matter effect on oscillations of solar and supernova neutrinos. From the point of view of the Earth tomography, these oscillations have a number of advantages over the oscillations of the accelerator or atmospheric neutrinos, which stem from the fact that solar and supernova neutrinos are coming to the Earth as mass eigenstates rather than flavour eigenstates. In particular, this allows reconstruction of density profiles even over relatively short neutrino path lengths in the Earth, and also of asymmetric profiles. We study the requirements that future experiments must meet to achieve a given accuracy of the tomography of the Earth.Comment: 35 pages, 7 figures; minor textual changes in section

    Measuring Atmospheric Neutrino Oscillations with Neutrino Telescopes

    Get PDF
    Neutrino telescopes with large detection volumes can demonstrate that the current indications of neutrino oscillation are correct or if a better description can be achieved with non-standard alternatives. Observations of contained muons produced by atmospheric neutrinos can better constrain the allowed region for oscillations or determine the relevant parameters of non-standard models. We analyze the possibility of neutrino telescopes measuring atmospheric neutrino oscillations. We suggest adjustments to improve this potential. An addition of four densely-instrumented strings to the AMANDA II detector makes observations feasible. Such a configuration is competitive with current and proposed experiments.Comment: 36 pages, 21 figures, revte

    Comparing and contrasting the ΜΌ→Μτ\nu_{\mu} \to \nu_{\tau} and ΜΌ→Μs\nu_{\mu} \to \nu_s solutions to the atmospheric neutrino problem with SuperKamiokande data

    Full text link
    The ΜΌ→Μτ\nu_{\mu} \to \nu_{\tau} and ΜΌ→Μs\nu_{\mu} \to \nu_s solutions to the atmospheric neutrino problem are compared with SuperKamiokande data. The differences between these solutions due to matter effects in the Earth are calculated for the ratio of ÎŒ\mu-like to ee-like events and for up-down flux asymmetries. These quantities are chosen because they are relatively insensitive to theoretical uncertainties in the overall neutrino flux normalisation and detection cross-sections and efficiencies. A χ2\chi^2 analysis using these quantities is performed yielding 3σ3\sigma ranges which are approximately given by (0.725−1.0,4×10−4−2×10−2eV2)(0.725 - 1.0, 4 \times 10^{-4} - 2 \times 10^{-2} eV^2) and (0.74−1.0,1×10−3−2×10−2eV2)(0.74 - 1.0, 1 \times 10^{-3} - 2 \times 10^{-2} eV^2) for (sin⁥22Ξ,Δm2)(\sin^2 2\theta,\Delta m^2) for the ΜΌ→Μτ\nu_{\mu} \to \nu_{\tau} and ΜΌ→Μs\nu_{\mu} \to \nu_s solutions, respectively. Values of Δm2\Delta m^2 smaller than about 2×10−32 \times 10^{-3} eV2^2 are disfavoured for the ΜΌ→Μs\nu_{\mu} \to \nu_s solution, suggesting that future long baseline experiments should see a positive signal if this scenario is the correct one.Comment: revtex, 22 pages, 12 figure

    The energy spectrum of tau leptons induced by the high energy Earth-skimming neutrinos

    Full text link
    We present a semi-analytic calculation of the tau-lepton flux emerging from the Earth, induced by the incident high energy neutrinos interacting inside the Earth for 105≀EÎœ/GeV≀101010^{5} \leq E_{\nu}/{\rm GeV} \leq 10^{10}. We obtain results for the energy dependence of the tau-lepton flux coming from the Earth-skimming neutrinos, because of the neutrino-nucleon charged-current scattering as well as the resonant Μˉee−\bar{\nu}_e e^- scattering. We illustrate our results for several anticipated high energy astrophysical neutrino sources such as the AGNs, the GRBs, and the GZK neutrino fluxes. The tau lepton fluxes resulting from rock-skimming and ocean-skimming neutrinos are compared. Such comparisons can render useful information for the spectral indices of incident neutrino fluxes.Comment: 23 pages, 6 figure

    Future Μτ\nu_\tau Oscillation Experiments and Present Data

    Full text link
    Our goal in this paper is to examine the discovery potential of laboratory experiments searching for the oscillation ΜΌ(Îœe)→Μτ\nu_\mu(\nu_e) \rightarrow \nu_\tau, in the light of recent data on solar and atmospheric neutrino experiments, which we analyse together with the most restrictive results from laboratory experiments on neutrino oscillations. In order to explain simultaneously allall present results we use a four-neutrino framework, with an additional sterile neutrino. Our predictions are rather pessimistic for the upcoming experiments NOMAD and CHORUS, which, we find, are able to explore only a small area of the oscillation parameter space. On the other hand, the discovery potential of future experiments is much larger. We consider three examples. E803, which is approved to operate in the future Fermilab main injector beam line, MINOS, a proposed long-baseline experiment also using the Fermilab beam, and NAUSICAA, an improved detector which improves by an order of magnitude the performance of CHORUS/NOMAD and can be operated either at CERN or at Fermilab beams. We find that those experiments can cover a very substantial fraction of the oscillation parameter space, having thus a very good chance of discovering bothboth ΜΌ→Μτ\nu_\mu \rightarrow \nu_\tau and Îœe→Μτ\nu_e \rightarrow \nu_\tau oscillation modes.Comment: Latex file using ReVTeX and epsifig.sty. 40 Pages. Revised version includes new references and changed Fig.

    Calculation of the Flux of Atmospheric Neutrinos

    Full text link
    Atmospheric neutrino-fluxes are calculated over the wide energy range from 30 MeV to 3,000 GeV for the study of neutrino-physics using the data from underground neutrino-detectors. The atmospheric muon-flux at high altitude and at sea level is studied to calibrate the neutrino-fluxes at low energies and high energies respectively. The agreement of our calculation with observations is satisfactory. The uncertainty of atmospheric neutrino-fluxes is also studied.Comment: 51 page
    corecore