12 research outputs found

    General boundary conditions for the envelope function in multiband k.p model

    Full text link
    We have derived general boundary conditions (BC) for the multiband envelope functions (which do not contain spurious solutions) in semiconductor heterostructures with abrupt heterointerfaces. These BC require the conservation of the probability flux density normal to the interface and guarantee that the multiband Hamiltonian be self--adjoint. The BC are energy independent and are characteristic properties of the interface. Calculations have been performed of the effect of the general BC on the electron energy levels in a potential well with infinite potential barriers using a coupled two band model. The connection with other approaches to determining BC for the envelope function and to the spurious solution problem in the multiband k.p model are discussed.Comment: 15 pages, 2 figures; to be published in Phys. Rev. B 65, March 15 issue 200

    Quantum radiation pressure on a moving mirror at finite temperature

    Get PDF
    We compute the radiation pressure force on a moving mirror, in the nonrelativistic approximation, assuming the field to be at temperature T.T. At high temperature, the force has a dissipative component proportional to the mirror velocity, which results from Doppler shift of the reflected thermal photons. In the case of a scalar field, the force has also a dispersive component associated to a mass correction. In the electromagnetic case, the separate contributions to the mass correction from the two polarizations cancel. We also derive explicit results in the low temperature regime, and present numerical results for the general case. As an application, we compute the dissipation and decoherence rates for a mirror in a harmonic potential well.Comment: Figure 3 replaced, changes mainly in Sections IV and V, new appendix introduced. To appear in Physical Review

    New Upper Limit of Terrestrial Equivalence Principle Test for Rotating Extended Bodies

    Full text link
    Improved terrestrial experiment to test the equivalence principle for rotating extended bodies is presented, and a new upper limit for the violation of the equivalence principle is obtained at the level of 1.610-7% \times 10^{\text{-7}}, which is limited by the friction of the rotating gyroscope. It means the spin-gravity interaction between the extended bodies has not been observed at this level.Comment: 4 page

    Effect of the Surface on the Electron Quantum Size Levels and Electron g-Factor in Spherical Semiconductor Nanocrystals

    Full text link
    The structure of the electron quantum size levels in spherical nanocrystals is studied in the framework of an eight--band effective mass model at zero and weak magnetic fields. The effect of the nanocrystal surface is modeled through the boundary condition imposed on the envelope wave function at the surface. We show that the spin--orbit splitting of the valence band leads to the surface--induced spin--orbit splitting of the excited conduction band states and to the additional surface--induced magnetic moment for electrons in bare nanocrystals. This additional magnetic moment manifests itself in a nonzero surface contribution to the linear Zeeman splitting of all quantum size energy levels including the ground 1S electron state. The fitting of the size dependence of the ground state electron g factor in CdSe nanocrystals has allowed us to determine the appropriate surface parameter of the boundary conditions. The structure of the excited electron states is considered in the limits of weak and strong magnetic fields.Comment: 11 pages, 4 figures, submitted to Phys. Rev.

    Comparison of advanced gravitational-wave detectors

    Get PDF
    We compare two advanced designs for gravitational-wave antennas in terms of their ability to detect two possible gravitational wave sources. Spherical, resonant mass antennas and interferometers incorporating resonant sideband extraction (RSE) were modeled using experimentally measurable parameters. The signal-to-noise ratio of each detector for a binary neutron star system and a rapidly rotating stellar core were calculated. For a range of plausible parameters we found that the advanced LIGO interferometer incorporating RSE gave higher signal-to-noise ratios than a spherical detector resonant at the same frequency for both sources. Spheres were found to be sensitive to these sources at distances beyond our galaxy. Interferometers were sensitive to these sources at far enough distances that several events per year would be expected

    Detector Description and Performance for the First Coincidence Observations between LIGO and GEO

    Get PDF
    For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial change

    Analysis of LIGO data for gravitational waves from binary neutron stars

    Get PDF
    We report on a search for gravitational waves from coalescing compact binary systems in the Milky Way and the Magellanic Clouds. The analysis uses data taken by two of the three LIGO interferometers during the first LIGO science run and illustrates a method of setting upper limits on inspiral event rates using interferometer data. The analysis pipeline is described with particular attention to data selection and coincidence between the two interferometers. We establish an observational upper limit of R<\mathcal{R}<1.7 \times 10^{2}peryearperMilkyWayEquivalentGalaxy(MWEG),with90coalescencerateofbinarysystemsinwhicheachcomponenthasamassintherange13 per year per Milky Way Equivalent Galaxy (MWEG), with 90% confidence, on the coalescence rate of binary systems in which each component has a mass in the range 1--3 M_\odot$.Comment: 17 pages, 9 figure

    An Introduction to Data Assimilation and Predictability in Geomagnetism

    No full text
    corecore