28 research outputs found

    A novel non-intrusive microcell for sound-speed measurements in liquids. Speed of sound and thermodynamic properties of 2-propanone at pressures up to 160 MPa

    Get PDF
    A novel high-pressure, ultrasonic cell of extremely reduced internal dimensions ( 0.8 10 6 m3) and good precision for the determination of the speed of propagation of sound in liquids was conceived and built. It makes use of a non-intrusive methodology where the ultrasonic transducers are not in direct contact with the liquid sample under investigation. The new cell was used to carry out speed of sound measurements in 2-propanone (acetone) in broad ranges of temperature (265 < T =K < 340) and pressure (0:1 < p=MPa < 160). (p; q; T ) data for acetone were also determined but in a narrower T ; p range (298 to 333 K; 0.1 to 60 MPa). In this interval, several thermodynamic properties were thus calculated, such as: isentropic (js) and isothermal (jTÞ compressibility, isobaric thermal expansivity (ap), isobaric (cp) and isochoric (cv) specific heat capacity, and the thermal pressure coefficient (cv). Comparisons with values found in the literature generally show good agreement.info:eu-repo/semantics/publishedVersio

    Thermophysical and thermodynamic properties of ionic liquids over an extended pressure range: [bmim][NTf2] and [hmim][NTf2]

    Get PDF
    The current study focuses on 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide, [bmim][NTf2], and 1-hexyl-3- methylimidazolium bis(trifluoromethylsulfonyl)amide, [hmim][NTf2]. The objective is to study the influence of pressure as well as that of the cation s alkyl chain length on several properties of this type of ionic liquids. Speed of propagation of ultrasound waves and densities in pure ionic liquids (ILs) as a function of temperature and pressure have been determined. Several other thermody namic properties such as compressibilities, expansivities and heat capacities have been obtained. Speed of sound measurements have been carried out in broad ranges of temperature (283 < T/K < 323) and pressure (0.1 < p/MPa < 150), using a non-intrusive micro cell. Density measurements have been performed at broad ranges of temperature (298 < T/K < 333) and pressure (0.1 < p/MPa < 60) using a vibrating tube densimeter. The pressure dependence of heat capacities, which is generally mild, is highly dependent on the curvature of the temperature dependence of density.info:eu-repo/semantics/publishedVersio

    Intra-molecular coupling as a mechanism for a liquid-liquid phase transition

    Get PDF
    We study a model for water with a tunable intra-molecular interaction JσJ_\sigma, using mean field theory and off-lattice Monte Carlo simulations. For all Jσ≥0J_\sigma\geq 0, the model displays a temperature of maximum density.For a finite intra-molecular interaction Jσ>0J_\sigma > 0,our calculations support the presence of a liquid-liquid phase transition with a possible liquid-liquid critical point for water, likely pre-empted by inevitable freezing. For J=0 the liquid-liquid critical point disappears at T=0.Comment: 8 pages, 4 figure

    Liquid-liquid equilibrium data of poly(N-isopropylacrylamide-co-1-deoxy-methacrylamido-d-glucitol) in water

    No full text

    Liquid-liquid equilibrium data of polystyrene in acetaldehyde

    No full text

    Phase behavior of (polyacrylamides + water) solutions: concentration, pressure and isotope effects

    Get PDF
    Phase diagrams of poly(N-isopropylacrylamide) (PNIPAAM) as well as of hydrophilically-modified copolymers in aqueous solution were determined. A high-accuracy He-Ne Laser scattering technique was used for the detection of operational spinodal (sp) and cloud-point (cp) curves. Polymer concentration was varied from 0.5 to 20 wt.%. In the case of copoly(PNIPAAM/vinylsaccharide) several different chain lengths were considered. Pressure (up to 400 bar) and solvent isotope effects were studied. We predict a closed-loop type phase diagram for the copolymers, which presents an estimated hypercritical point in H2O solutions at Mw~0.5×105, although only lower critical solution temperature (LCST) is experimentally accessible. At lower molecular weights, the solutions are always in the one-phase region.http://www.sciencedirect.com/science/article/B6TG2-43MC9F5-N/1/63fb7dd8bec4ff798723b9bcb318a0a
    corecore