1,000 research outputs found
The Casimir effect for parallel plates at finite temperature in the presence of one fractal extra compactified dimension
We discuss the Casimir effect for massless scalar fields subject to the
Dirichlet boundary conditions on the parallel plates at finite temperature in
the presence of one fractal extra compactified dimension. We obtain the Casimir
energy density with the help of the regularization of multiple zeta function
with one arbitrary exponent and further the renormalized Casimir energy density
involving the thermal corrections. It is found that when the temperature is
sufficiently high, the sign of the Casimir energy remains negative no matter
how great the scale dimension is within its allowed region. We derive
and calculate the Casimir force between the parallel plates affected by the
fractal additional compactified dimension and surrounding temperature. The
stronger thermal influence leads the force to be stronger. The nature of the
Casimir force keeps attractive.Comment: 14 pages, 2 figure
QGP flow fluctuations and the characteristics of higher moments
The dynamical development of expanding Quark-gluon Plasma (QGP) flow is
studied in a 3+1D fluid dynamical model with a globally symmetric, initial
condition. We minimize fluctuations arising from complex dynamical processes at
finite impact parameters and from fluctuating random initial conditions to have
a conservative fluid dynamical background estimate for the statistical
distributions of the thermodynamical parameters. We also avoid a phase
transition in the equation of state, and we let the matter supercool during the
expansion.
Then central Pb+Pb collisions at TeV are studied in an
almost perfect fluid dynamical model, with azimuthally symmetric initial state
generated in a dynamical flux-tube model. The general development of
thermodynamical extensives are also shown for lower energies.
We observe considerable deviations from a thermal equilibrium source as a
consequence of the fluid dynamical expansion arising from a least fluctuating
initial state
Finite temperature Casimir effect of massive fermionic fields in the presence of compact dimensions
We consider the finite temperature Casimir effect of a massive fermionic
field confined between two parallel plates, with MIT bag boundary conditions on
the plates. The background spacetime is which has
dimensions compactified to a torus. On the compact dimensions, the field is
assumed to satisfy periodicity boundary conditions with arbitrary phases. Both
the high temperature and the low temperature expansions of the Casimir free
energy and the force are derived explicitly. It is found that the Casimir force
acting on the plates is always attractive at any temperature regardless of the
boundary conditions assumed on the compact torus. The asymptotic limits of the
Casimir force in the small plate separation limit are also obtained.Comment: 10 pages, accepted by Phys. Lett.
Structural and dynamical properties of superfluid helium: a density functional approach
We present a novel density functional for liquid 4He, properly accounting for
the static response function and the phonon-roton dispersion in the uniform
liquid. The functional is used to study both structural and dynamical
properties of superfluid helium in various geometries. The equilibrium
properties of the free surface, droplets and films at zero temperature are
calculated. Our predictions agree closely to the results of ab initio Monte
Carlo calculations, when available. The introduction of a phenomenological
velocity dependent interaction, which accounts for backflow effects, is
discussed. The spectrum of the elementary excitations of the free surface and
films is studied.Comment: 37 pages, REVTeX 3.0, figures on request at [email protected]
From formation to disruption : observing the multiphase evolution of a solar flare current sheet
X.C. is funded by NSFC grants 11722325, 11733003, 11790303, and 11790300 and the Alexander von Humboldt Foundation.A current sheet, where magnetic energy is liberated through reconnection and converted to other forms, is thought to play the central role in solar flares, the most intense explosions in the heliosphere. However, the evolution of a current sheet and its subsequent role in flare-related phenomena such as particle acceleration is poorly understood. Here we report observations obtained with NASA's Solar Dynamics Observatory that reveal a multiphase evolution of a current sheet in the early stages of a solar flare, from its formation to quasi-stable evolution and disruption. Our observations have implications for the understanding of the onset and evolution of reconnection in the early stages of eruptive solar flares.Publisher PDFPeer reviewe
Two-hadron semi-inclusive production including subleading twist
We extend the analysis of two-hadron fragmentation functions to the
subleading twist, discussing also the issue of color gauge invariance. Our
results can be used anywhere two unpolarized hadrons are semi-inclusively
produced in the same fragmentation region, also at moderate values of the hard
scale Q. Here, we consider the example of polarized deep-inelastic production
of two hadrons and we give a complete list of cross sections and spin
asymmetries up to subleading twist. Among the results, we highlight the
possibility of extracting the transversity distribution with longitudinally
polarized targets and also the twist-3 distribution e(x), which is related to
the pion-nucleon sigma term and to the strangeness content of the nucleon.Comment: 16 pages, RevTeX4, 5 figures, revised notation of several formulae,
added text in Secs. III-V, added reference
Shear viscosity of the Quark-Gluon Plasma from a virial expansion
We calculate the shear viscosity in the quark-gluon plasma (QGP) phase
within a virial expansion approach with particular interest in the ratio of
to the entropy density , i.e. . The virial expansion approach
allows us to include the interactions between the partons in the deconfined
phase and to evaluate the corrections to a single-particle partition function.
In the latter approach we start with an effective interaction with parameters
fixed to reproduce thermodynamical quantities of QCD such as energy and/or
entropy density. We also directly extract the effective coupling \ga_{\rm V}
for the determination of . Our numerical results give a ratio
at the critical temperature , which is very
close to the theoretical bound of . Furthermore, for temperatures
the ratio is in the range of the present
experimental estimates at RHIC. When combining our results for
in the deconfined phase with those from chiral perturbation theory or
the resonance gas model in the confined phase we observe a pronounced minimum
of close to the critical temperature .Comment: Published in Eur. Phys. J. C, 7 pages, 2 figures, 3 tabl
Inflation and late time acceleration in braneworld cosmological models with varying brane tension
Braneworld models with variable brane tension introduce a new
degree of freedom that allows for evolving gravitational and cosmological
constants, the latter being a natural candidate for dark energy. We consider a
thermodynamic interpretation of the varying brane tension models, by showing
that the field equations with variable can be interpreted as
describing matter creation in a cosmological framework. The particle creation
rate is determined by the variation rate of the brane tension, as well as by
the brane-bulk energy-matter transfer rate. We investigate the effect of a
variable brane tension on the cosmological evolution of the Universe, in the
framework of a particular model in which the brane tension is an exponentially
dependent function of the scale factor. The resulting cosmology shows the
presence of an initial inflationary expansion, followed by a decelerating
phase, and by a smooth transition towards a late accelerated de Sitter type
expansion. The varying brane tension is also responsible for the generation of
the matter in the Universe (reheating period). The physical constraints on the
model parameters, resulted from the observational cosmological data, are also
investigated.Comment: 25 pages, 8 figures, accepted for publication in European Physical
Journal
Transport Properties of the Quark-Gluon Plasma -- A Lattice QCD Perspective
Transport properties of a thermal medium determine how its conserved charge
densities (for instance the electric charge, energy or momentum) evolve as a
function of time and eventually relax back to their equilibrium values. Here
the transport properties of the quark-gluon plasma are reviewed from a
theoretical perspective. The latter play a key role in the description of
heavy-ion collisions, and are an important ingredient in constraining particle
production processes in the early universe. We place particular emphasis on
lattice QCD calculations of conserved current correlators. These Euclidean
correlators are related by an integral transform to spectral functions, whose
small-frequency form determines the transport properties via Kubo formulae. The
universal hydrodynamic predictions for the small-frequency pole structure of
spectral functions are summarized. The viability of a quasiparticle description
implies the presence of additional characteristic features in the spectral
functions. These features are in stark contrast with the functional form that
is found in strongly coupled plasmas via the gauge/gravity duality. A central
goal is therefore to determine which of these dynamical regimes the quark-gluon
plasma is qualitatively closer to as a function of temperature. We review the
analysis of lattice correlators in relation to transport properties, and
tentatively estimate what computational effort is required to make decisive
progress in this field.Comment: 54 pages, 37 figures, review written for EPJA and APPN; one parag.
added end of section 3.4, and one at the end of section 3.2.2; some Refs.
added, and some other minor change
Magnetogenesis and the dynamics of internal dimensions
The dynamical evolution of internal space-like dimensions breaks the
invariance of the Maxwell's equations under Weyl rescaling of the (conformally
flat) four-dimensional metric. Depending upon the number and upon the dynamics
of internal dimensions large scale magnetic fields can be created. The
requirements coming from magnetogenesis together with the other cosmological
constraints are examined under the assumption that the internal dimensions
either grow or shrink (in conformal time) prior to a radiation dominated epoch.
If the internal dimensions are growing the magnitude of the generated magnetic
fields can seed the galactic dynamo mechanism.Comment: 27 in RevTex style, four figure
- …
