866 research outputs found
The Casimir effect for parallel plates at finite temperature in the presence of one fractal extra compactified dimension
We discuss the Casimir effect for massless scalar fields subject to the
Dirichlet boundary conditions on the parallel plates at finite temperature in
the presence of one fractal extra compactified dimension. We obtain the Casimir
energy density with the help of the regularization of multiple zeta function
with one arbitrary exponent and further the renormalized Casimir energy density
involving the thermal corrections. It is found that when the temperature is
sufficiently high, the sign of the Casimir energy remains negative no matter
how great the scale dimension is within its allowed region. We derive
and calculate the Casimir force between the parallel plates affected by the
fractal additional compactified dimension and surrounding temperature. The
stronger thermal influence leads the force to be stronger. The nature of the
Casimir force keeps attractive.Comment: 14 pages, 2 figure
From formation to disruption : observing the multiphase evolution of a solar flare current sheet
X.C. is funded by NSFC grants 11722325, 11733003, 11790303, and 11790300 and the Alexander von Humboldt Foundation.A current sheet, where magnetic energy is liberated through reconnection and converted to other forms, is thought to play the central role in solar flares, the most intense explosions in the heliosphere. However, the evolution of a current sheet and its subsequent role in flare-related phenomena such as particle acceleration is poorly understood. Here we report observations obtained with NASA's Solar Dynamics Observatory that reveal a multiphase evolution of a current sheet in the early stages of a solar flare, from its formation to quasi-stable evolution and disruption. Our observations have implications for the understanding of the onset and evolution of reconnection in the early stages of eruptive solar flares.Publisher PDFPeer reviewe
QGP flow fluctuations and the characteristics of higher moments
The dynamical development of expanding Quark-gluon Plasma (QGP) flow is
studied in a 3+1D fluid dynamical model with a globally symmetric, initial
condition. We minimize fluctuations arising from complex dynamical processes at
finite impact parameters and from fluctuating random initial conditions to have
a conservative fluid dynamical background estimate for the statistical
distributions of the thermodynamical parameters. We also avoid a phase
transition in the equation of state, and we let the matter supercool during the
expansion.
Then central Pb+Pb collisions at TeV are studied in an
almost perfect fluid dynamical model, with azimuthally symmetric initial state
generated in a dynamical flux-tube model. The general development of
thermodynamical extensives are also shown for lower energies.
We observe considerable deviations from a thermal equilibrium source as a
consequence of the fluid dynamical expansion arising from a least fluctuating
initial state
Biopsy-Proven Lymphocytic Myocarditis With Heart Failure in a Middle-Aged Female Patient With Mixed Connective Tissue Disease
Abstract A 56-year-old woman with mixed connective tissue disease, who was on maintenance immunosuppression, developed asymptomatic left ventricular dysfunction, ventricular arrhythmia, and high troponin I. Heart catheterization showed normal coronaries and biopsy-proven, virus-negative lymphocytic myocarditis. A biopsy-guided immunosuppression upgrade effectively treated autoimmune myocarditis, which resulted in ventricular function recovery, resolution of arrhythmia, and of troponin release. (Level of Difficulty: Advanced.
Finite temperature Casimir effect of massive fermionic fields in the presence of compact dimensions
We consider the finite temperature Casimir effect of a massive fermionic
field confined between two parallel plates, with MIT bag boundary conditions on
the plates. The background spacetime is which has
dimensions compactified to a torus. On the compact dimensions, the field is
assumed to satisfy periodicity boundary conditions with arbitrary phases. Both
the high temperature and the low temperature expansions of the Casimir free
energy and the force are derived explicitly. It is found that the Casimir force
acting on the plates is always attractive at any temperature regardless of the
boundary conditions assumed on the compact torus. The asymptotic limits of the
Casimir force in the small plate separation limit are also obtained.Comment: 10 pages, accepted by Phys. Lett.
Structural and dynamical properties of superfluid helium: a density functional approach
We present a novel density functional for liquid 4He, properly accounting for
the static response function and the phonon-roton dispersion in the uniform
liquid. The functional is used to study both structural and dynamical
properties of superfluid helium in various geometries. The equilibrium
properties of the free surface, droplets and films at zero temperature are
calculated. Our predictions agree closely to the results of ab initio Monte
Carlo calculations, when available. The introduction of a phenomenological
velocity dependent interaction, which accounts for backflow effects, is
discussed. The spectrum of the elementary excitations of the free surface and
films is studied.Comment: 37 pages, REVTeX 3.0, figures on request at [email protected]
Casimir Effect in Spacetime with Extra Dimensions -- From Kaluza-Klein to Randall-Sundrum Models
In this article, we derive the finite temperature Casimir force acting on a
pair of parallel plates due to a massless scalar field propagating in the bulk
of a higher dimensional brane model. In contrast to previous works which used
approximations for the effective masses in deriving the Casimir force, the
formulas of the Casimir force we derive are exact formulas. Our results
disprove the speculations that existence of the warped extra dimension can
change the sign of the Casimir force, be it at zero or any finite temperature.Comment: 9 pages, 3 figure. Final version accepted by Phys. Lett.
The Casimir effect for parallel plates in the spacetime with a fractal extra compactified dimension
The Casimir effect for massless scalar fields satisfying Dirichlet boundary
conditions on the parallel plates in the presence of one fractal extra
compactified dimension is analyzed. We obtain the Casimir energy density by
means of the regularization of multiple zeta function with one arbitrary
exponent. We find a limit on the scale dimension like to keep the
negative sign of the renormalized Casimir energy which is the difference
between the regularized energy for two parallel plates and the one with no
plates. We derive and calculate the Casimir force relating to the influence
from the fractal additional compactified dimension between the parallel plates.
The larger scale dimension leads to the greater revision on the original
Casimir force. The two kinds of curves of Casimir force in the case of
integer-numbered extra compactified dimension or fractal one are not
superposition, which means that the Casimir force show whether the
dimensionality of additional compactified space is integer or fraction.Comment: 9 pages, 3 figure
Stability of curvature perturbation with new covariant form for energy-momentum transfer in dark sector
It was found that the model with interaction between cold dark matter (CDM)
and dark energy (DE) proportional to the energy density of CDM and
constant equation of state of DE suffered from instabilities of the
density perturbations on the supper-Hubble scales. Here we suggest a new
covariant model for the energy-momentum transfer between CDM and DE. Then using
the covariant model, we analyze the evolution of density perturbations on the
supper-Hubble scale. We find that the instabilities can be avoided in the model
with constant and interaction proportional to . Furthermore, we
analyze the dominant non-adiabatic mode in the radiation era and find that the
mode grows regularly.Comment: 12 pages, 2 figure
- …