1,731 research outputs found
Collaborative program AVRDC/CIRAD : Set up of techniques for: Onion breeding and galrlic dissemination
On-disc observations of flux rope formation prior to its eruption
Coronal mass ejections (CMEs) are one of the primary manifestations of solar activity and can drive severe space weather effects. Therefore, it is vital to work towards being able to predict their occurrence. However, many aspects of CME formation and eruption remain unclear, including whether magnetic flux ropes are present before the onset of eruption and the key mechanisms that cause CMEs to occur. In this work, the pre-eruptive coronal configuration of an active region that produced an interplanetary CME with a clear magnetic flux rope structure at 1 AU is studied. A forward-S sigmoid appears in extreme-ultraviolet (EUV) data two hours before the onset of the eruption (SOL2012-06-14), which is interpreted as a signature of a right-handed flux rope that formed prior to the eruption. Flare ribbons and EUV dimmings are used to infer the locations of the flux rope footpoints. These locations, together with observations of the global magnetic flux distribution, indicate that an interaction between newly emerged magnetic flux and pre-existing sunspot field in the days prior to the eruption may have enabled the coronal flux rope to form via tether-cutting-like reconnection. Composition analysis suggests that the flux rope had a coronal plasma composition, supporting our interpretation that the flux rope formed via magnetic reconnection in the corona. Once formed, the flux rope remained stable for two hours before erupting as a CME
Facets and Typed Relations as Tools for Reasoning Processes in Information Retrieval
Faceted arrangement of entities and typed relations for representing
different associations between the entities are established tools in knowledge
representation. In this paper, a proposal is being discussed combining both
tools to draw inferences along relational paths. This approach may yield new
benefit for information retrieval processes, especially when modeled for
heterogeneous environments in the Semantic Web. Faceted arrangement can be used
as a se-lection tool for the semantic knowledge modeled within the knowledge
repre-sentation. Typed relations between the entities of different facets can
be used as restrictions for selecting them across the facets
Dependence of direct detection signals on the WIMP velocity distribution
The signals expected in WIMP direct detection experiments depend on the
ultra-local dark matter distribution. Observations probe the local density,
circular speed and escape speed, while simulations find velocity distributions
that deviate significantly from the standard Maxwellian distribution. We
calculate the energy, time and direction dependence of the event rate for a
range of velocity distributions motivated by recent observations and
simulations, and also investigate the uncertainty in the determination of WIMP
parameters. The dominant uncertainties are the systematic error in the local
circular speed and whether or not the MW has a high density dark disc. In both
cases there are substantial changes in the mean differential event rate and the
annual modulation signal, and hence exclusion limits and determinations of the
WIMP mass. The uncertainty in the shape of the halo velocity distribution is
less important, however it leads to a 5% systematic error in the WIMP mass. The
detailed direction dependence of the event rate is sensitive to the velocity
distribution. However the numbers of events required to detect anisotropy and
confirm the median recoil direction do not change substantially.Comment: 21 pages, 7 figures, v2 version to appear in JCAP, minor change
Superheavy Dark Matter with Discrete Gauge Symmetries
We show that there are discrete gauge symmetries protect naturally heavy X
particles from decaying into the ordinary light particles in the supersymmetric
standard model. This makes the proposal very attractive that the superheavy X
particles constitute a part of the dark matter in the present universe. It is
more interesting that there are a class of discrete gauge symmetries which
naturally accommodate a long-lived unstable X particle. We find that in some
discrete Z_{10} models, for example, a superheavy X particle has lifetime
\tau_X \simeq 10^{11}-10^{26} years for its mass M_X \simeq 10^{13}-10^{14}
GeV. This long lifetime is guaranteed by the absence of lower dimensional
operators (of light particles) couple to the X. We briefly discuss a possible
explanation for the recently observed ultra-high-energy cosmic ray events by
the decay of this unstable X particle.Comment: 9 pages, Late
A new wrinkle on the enhancon
We generalize the basic enhancon solution of Johnson, Peet and Polchinski by
constructing solutions without spherical symmetry. A careful consideration of
boundary conditions at the enhancon surface indicates that the interior of the
supergravity solution is still flat space in the general case. We provide some
explicit analytic solutions where the enhancon locus is a prolate or oblate
sphere.Comment: 19 pages, no figure
Entropy of semiclassical measures for nonpositively curved surfaces
We study the asymptotic properties of eigenfunctions of the Laplacian in the
case of a compact Riemannian surface of nonpositive sectional curvature. We
show that the Kolmogorov-Sinai entropy of a semiclassical measure for the
geodesic flow is bounded from below by half of the Ruelle upper bound. We
follow the same main strategy as in the Anosov case (arXiv:0809.0230). We focus
on the main differences and refer the reader to (arXiv:0809.0230) for the
details of analogous lemmas.Comment: 20 pages. This note provides a detailed proof of a result announced
in appendix A of a previous work (arXiv:0809.0230, version 2
Study of the three-dimensional shape and dynamics of coronal loops observed by Hinode/EIS
We study plasma flows along selected coronal loops in NOAA Active Region
10926, observed on 3 December 2006 with Hinode's EUV Imaging Spectrograph
(EIS). From the shape of the loops traced on intensity images and the Doppler
shifts measured along their length we compute their three-dimensional (3D)
shape and plasma flow velocity using a simple geometrical model. This
calculation was performed for loops visible in the Fe VIII 185 Ang., Fe X 184
Ang., Fe XII 195 Ang., Fe XIII 202 Ang., and Fe XV 284 Ang. spectral lines. In
most cases the flow is unidirectional from one footpoint to the other but there
are also cases of draining motions from the top of the loops to their
footpoints. Our results indicate that the same loop may show different flow
patterns when observed in different spectral lines, suggesting a dynamically
complex rather than a monolithic structure. We have also carried out magnetic
extrapolations in the linear force-free field approximation using SOHO/MDI
magnetograms, aiming toward a first-order identification of extrapolated
magnetic field lines corresponding to the reconstructed loops. In all cases,
the best-fit extrapolated lines exhibit left-handed twist (alpha < 0), in
agreement with the dominant twist of the region.Comment: 17 pages, 6 figure
Optical Properties and Structure of Most Stable Subnanometer (ZnAs2)n Clusters
ZnAs2 nanoclusters were fabricated by incorporation into pores of zeolite
Na-X and by laser ablation. Absorption and photoluminescence spectra of ZnAs2
nanoclusters in zeolite were measured at the temperatures of 4.2, 77 and 293 K.
Both absorption and PL spectra consist of two bands which demonstrate the blue
shift from the line of free exciton in bulk crystal. We performed the
calculations aimed to find the most stable clusters in the size region up to
size of the zeolite Na-X supercage. The most stable clusters are (ZnAs2)6 and
(ZnAs2)8 with binding energies of 7.181 eV and 8.012 eV per (ZnAs2)1 formula
unit respectively. Therefore, we attributed two bands observed in absorption
and PL spectra to these stable clusters. The measured Raman spectrum of ZnAs2
clusters in zeolite was explained to be originated from (ZnAs2)6 and (ZnAs2)8
clusters as well. The PL spectrum of ZnAs2 clusters produced by laser ablation
consists of a single band which has been attributed to emission of (ZnAs2)8
cluster.Comment: Article accepted for publication in Physica B: Physics of Condensed
Matte
Barred Galaxies in the Coma Cluster
We use ACS data from the HST Treasury survey of the Coma cluster (z~0.02) to
study the properties of barred galaxies in the Coma core, the densest
environment in the nearby Universe. This study provides a complementary data
point for studies of barred galaxies as a function of redshift and environment.
From ~470 cluster members brighter than M_I = -11 mag, we select a sample of
46 disk galaxies (S0--Im) based on visual classification. The sample is
dominated by S0s for which we find an optical bar fraction of 47+/-11% through
ellipse fitting and visual inspection. Among the bars in the core of the Coma
cluster, we do not find any very large (a_bar > 2 kpc) bars. Comparison to
other studies reveals that while the optical bar fraction for S0s shows only a
modest variation across low-to-intermediate density environments (field to
intermediate-density clusters), it can be higher by up to a factor of ~2 in the
very high-density environment of the rich Coma cluster core.Comment: Proceedings of the Bash symposium, to appear in the Astronomical
Society of the Pacific Conference Series, eds. L. Stanford, L. Hao, Y. Mao,
J. Gree
- …
