7 research outputs found

    Zinc availability for corn grown on an oxisol amended with flue dust Disponibilidade de zinco para o milho em latossolo vermelho tratado com pó-de-aciaria

    Get PDF
    The costs related to the construction and maintenance of industrial landfills, and the environmental risks that they may represent, have increased the interest of several types of industries in studying the possibility of applying residues to agricultural soils. This study evaluates the efficiency of flue dust as a zinc source for corn, and the zinc availability for corn evaluated by four methods. A greenhouse experiment carried out at Campinas, SP, Brazil, evaluated the effect of two zinc sources (flue dust and zinc sulphate), at three rates (5, 50 and 150 mg dm-3), in one soil (Rhodic Hapludox) under two pH conditions (5.0 and 6.0). The treatments were arranged in a randomized factorial scheme design with three replications. Zinc availability indexes were determined by the pH 7.3 DTPA, Mehlich-1, and Mehlich-3 methods. The free Zn2+ activity in soil solution was calculated by the MINTEQ computer model. The extraction methods and the activity of the free ion Zn2+ were equally reliable to evaluate zinc availability in the soil amended with flue dust. More than 70% of the total Zn present in the saturation extract was in the free ion form, and the remainder was mainly complexed to SO4(2-) and OH-, independent of soil pH. Flue dust is a zinc supplier to plants. All tested methods were efficient in evaluating Zn availability for corn, independently of soil pH.<br>Os custos com a construção e manutenção de aterros industriais e os riscos ambientais que podem representar têm aumentado o interesse de vários tipos de indústrias em estudar a viabilidade de aplicação de resíduos no solo agrícola. Este trabalho avalia a eficiência do pó de aciaria quanto ao suprimento de zinco para o milho e a disponibilidade desse metal comparada por quatro métodos de extração. O experimento foi conduzido em casa de vegetação em Campinas, SP, Brasil, avaliando o efeito de duas fontes de zinco (pó de aciaria e sulfato de zinco), em três doses (5, 50 e 150 mg dm-3) e um solo (Latossolo Vermelho) com dois valores de pH (5,0 e 6,0). Os tratamentos foram distribuídos em esquema fatorial com três repetições. A disponibilidade de zinco foi determinada por DTPA pH 7.3, Mehlich-1 e Mehlich-3 e a atividade do Zn2+ livre na solução do solo foi calculada pelo modelo MINTEQ. Nos dois valores de pH estudados, tanto a atividade do Zn2+ como os três métodos de extração foram igualmente eficientes em avaliar a disponibilidade de zinco para as plantas em solos tratados com pó de aciaria. Mais que 70% do Zn total presente no extrato de saturação estava como íon livre e o restante complexado com SO4(2-) e OH-, independente do pH do solo. O pó de aciaria é uma fonte de zinco para as plantas. Todos os métodos testados foram eficientes em estimar a disponibilidade de Zn para o milho, independente do p

    Brazilian Flora 2020: Leveraging the power of a collaborative scientific network

    No full text
    International audienceThe shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiversity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxonomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world's known plant species than any other country. Despite that, Flora Brasiliensis, concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world's most biodiverse countries. We further identify collection gaps and summarize future goals that extend beyond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still unequally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the country. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora

    Growing knowledge: an overview of Seed Plant diversity in Brazil

    No full text

    Growing knowledge: an overview of Seed Plant diversity in Brazil

    No full text
    Abstract An updated inventory of Brazilian seed plants is presented and offers important insights into the country's biodiversity. This work started in 2010, with the publication of the Plants and Fungi Catalogue, and has been updated since by more than 430 specialists working online. Brazil is home to 32,086 native Angiosperms and 23 native Gymnosperms, showing an increase of 3% in its species richness in relation to 2010. The Amazon Rainforest is the richest Brazilian biome for Gymnosperms, while the Atlantic Rainforest is the richest one for Angiosperms. There was a considerable increment in the number of species and endemism rates for biomes, except for the Amazon that showed a decrease of 2.5% of recorded endemics. However, well over half of Brazillian seed plant species (57.4%) is endemic to this territory. The proportion of life-forms varies among different biomes: trees are more expressive in the Amazon and Atlantic Rainforest biomes while herbs predominate in the Pampa, and lianas are more expressive in the Amazon, Atlantic Rainforest, and Pantanal. This compilation serves not only to quantify Brazilian biodiversity, but also to highlight areas where there information is lacking and to provide a framework for the challenge faced in conserving Brazil's unique and diverse flora
    corecore