298 research outputs found
Fluctuations and Instabilities of Ferromagnetic Domain Wall pairs in an External Magnetic Field
Soliton excitations and their stability in anisotropic quasi-1D ferromagnets
are analyzed analytically. In the presence of an external magnetic field, the
lowest lying topological excitations are shown to be either soliton-soliton or
soliton-antisoliton pairs. In ferromagnetic samples of macro- or mesoscopic
size, these configurations correspond to twisted or untwisted pairs of Bloch
walls. It is shown that the fluctuations around these configurations are
governed by the same set of operators. The soliton-antisoliton pair has exactly
one unstable mode and thus represents a critical nucleus for thermally
activated magnetization reversal in effectively one-dimensional systems. The
soliton-soliton pair is stable for small external fields but becomes unstable
for large magnetic fields. From the detailed expression of this instability
threshold and an analysis of nonlocal demagnetizing effects it is shown that
the relative chirality of domain walls can be detected experimentally in thin
ferromagnetic films. The static properties of the present model are equivalent
to those of a nonlinear sigma-model with anisotropies. In the limit of large
hard-axis anisotropy the model reduces to a double sine-Gordon model.Comment: 15 pages RevTex 3.0 (twocolumn), 9 figures available on request, to
appear in Phys Rev B, Dec (1994
De-Tuning Albedo Parameters in a Coupled Climate Ice Sheet Model to Simulate the North American Ice Sheet at the Last Glacial Maximum
The Last Glacial Maximum extent of the North American Ice Sheets is well constrained empirically but has proven to be challenging to simulate with coupled Climate-Ice Sheet models. Coupled Climate-Ice Sheet models are often too computationally expensive to sufficiently explore uncertainty in input parameters, and it is unlikely that values calibrated to reproduce modern ice sheets will reproduce the known extent of the ice at the Last Glacial Maximum. To address this, we run an ensemble with a coupled Climate-Ice Sheet model (FAMOUS-ice), simulating the final stages of growth of the last North American Ice Sheets' maximum extent. Using this large ensemble approach, we explore the influence of numerous uncertain ice sheet albedo, ice sheet dynamics, atmospheric, and oceanic parameters on the ice sheet extent. We find that ice sheet albedo parameters determine the majority of uncertainty when simulating the Last Glacial Maximum North American Ice Sheets. Importantly, different albedo parameters are needed to produce a good match to the Last Glacial Maximum North American Ice Sheets than have previously been used to model the contemporary Greenland Ice Sheet due to differences in cloud cover over ablation zones. Thus, calibrating coupled climate-ice sheet models on one ice sheet may produce strong biases when the model is applied to a new domain
Exceptional skull of huayqueriana (mammalia, litopterna, macraucheniidae) from the late miocene of Argentina: Anatomy, systematics, and peleobiological implications
The HuayquerĂas Formation (Late Miocene, Huayquerian SALMA) is broadly exposed in westcentral Argentina (Mendoza). The target of several major paleontological expeditions in the first half of the 20th century, the Mendozan HuayquerĂas (badlands) have recently yielded a significant number of new fossil finds. In this contribution we describe a complete skull (IANIGLA-PV 29) and place it systematically as Huayqueriana cf. H. cristata (Rovereto, 1914) (Litopterna, Macraucheniidae). The specimen shares some nonexclusive features with H. cristata (similar size, rostral border of the orbit almost level with distal border of M3, convergence of maxillary bones at the level of the P3/P4 embrasure, flat snout, very protruding orbits, round outline of premaxillary area in palatal view, and small diastemata between I3/C and C/P1). Other differences (e.g., lack of sagittal crest) may or may not represent intraspecific variation. In addition to other features described here, endocast reconstruction utilizing computer tomography (CT) revealed the presence of a derived position of the orbitotemporal canal running below the rhinal fissure along the lateroventral aspect of the piriform lobe. CT scanning also established that the maxillary nerve (CN V2) leaves the skull through the sphenoorbital fissure, as in all other litopterns, a point previously contested for macraucheniids. The angle between the lateral semicircular canal and the plane of the base of the skull is about 26°, indicating that in life the head was oriented much as in modern horses. Depending on the variables used, estimates of the body mass of IANIGLA-PV 29 produced somewhat conflicting results. Our preferred body mass estimate is 250 kg, based on the centroid size of 36 3D cranial landmarks and accompanying low prediction error. The advanced degree of tooth wear in IANIGLA-PV 29 implies that the individual died well into old age. However, a count of cementum lines on the sectioned left M2 is consistent with an age at death of 10 or 11 years, younger than expected given its body mass. This suggests that the animal had a very abrasive diet. Phylogenetic analysis failed to resolve the position of IANIGLA-PV 29 satisfactorily, a result possibly influenced by intraspecific variation. There is no decisive evidence for the proposition that Huayqueriana, or any other litoptern, were foregut fermenters.Fil: Forasiepi, Analia Marta. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Mendoza. Instituto Argentino de NivologĂa, GlaciologĂa y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de NivologĂa, GlaciologĂa y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de NivologĂa, GlaciologĂa y Ciencias Ambientales; ArgentinaFil: MacPhee, Ross D. E.. American Museum Of Natural History; Estados UnidosFil: HernĂĄndez del Pino, Santiago Ezequiel. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Mendoza. Instituto Argentino de NivologĂa, GlaciologĂa y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de NivologĂa, GlaciologĂa y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de NivologĂa, GlaciologĂa y Ciencias Ambientales; ArgentinaFil: Schmidt, Gabriela Ines. Provincia de Entre RĂos. Centro de Investigaciones CientĂficas y Transferencia de TecnologĂa a la ProducciĂłn. Universidad AutĂłnoma de Entre RĂos. Centro de Investigaciones CientĂficas y Transferencia de TecnologĂa a la ProducciĂłn. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Santa Fe. Centro de Investigaciones CientĂficas y Transferencia de TecnologĂa a la ProducciĂłn; ArgentinaFil: Amson, Eli. Universitat Zurich; SuizaFil: GrohĂ©, Camille. American Museum Of Natural History; Estados Unido
Diving into the vertical dimension of elasmobranch movement ecology
Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements
Gendering the careers of young professionals: some early findings from a longitudinal study. in Organizing/theorizing: developments in organization theory and practice
Wonders whether companies actually have employees best interests at heart across physical, mental and spiritual spheres. Posits that most organizations ignore their workforce â not even, in many cases, describing workers as assets! Describes many studies to back up this claim in theis work based on the 2002 Employment Research Unit Annual Conference, in Cardiff, Wales
Measurement of the azimuthal anisotropy of Y(1S) and Y(2S) mesons in PbPb collisions at âNN = 5.02 TeV
The second-order Fourier coefficients (Ï
) characterizing the azimuthal distributions of ΄(1S) and ΄(2S) mesons produced in PbPb collisions at = 5.02 TeV are studied. The ΄mesons are reconstructed in their dimuon decay channel, as measured by the CMS detector. The collected data set corresponds to an integrated luminosity of 1.7 nb. The scalar product method is used to extract the Ï
coefficients of the azimuthal distributions. Results are reported for the rapidity range |y| < 2.4, in the transverse momentum interval 0 < p < 50 GeV/c, and in three centrality ranges of 10â30%, 30â50% and 50â90%. In contrast to the J/Ï mesons, the measured Ï
values for the ΄ mesons are found to be consistent with zero
Measurement of prompt D and meson azimuthal anisotropy and search for strong electric fields in PbPb collisions at root = 5.02 TeV
The strong Coulomb field created in ultrarelativistic heavy ion collisions is expected to produce a rapiditydependent difference (Av2) in the second Fourier coefficient of the azimuthal distribution (elliptic flow, v2) between D0 (uc) and D0 (uc) mesons. Motivated by the search for evidence of this field, the CMS detector at the LHC is used to perform the first measurement of Av2. The rapidity-averaged value is found to be (Av2) = 0.001 ? 0.001 (stat)? 0.003 (syst) in PbPb collisions at ?sNN = 5.02 TeV. In addition, the influence of the collision geometry is explored by measuring the D0 and D0mesons v2 and triangular flow coefficient (v3) as functions of rapidity, transverse momentum (pT), and event centrality (a measure of the overlap of the two Pb nuclei). A clear centrality dependence of prompt D0 meson v2 values is observed, while the v3 is largely independent of centrality. These trends are consistent with expectations of flow driven by the initial-state geometry. ? 2021 The Author. Published by Elsevier B.V. This is an open access article under the CC BY licens
- âŠ