248 research outputs found

    Higgs algebraic symmetry of screened system in a spherical geometry

    Full text link
    The orbits and the dynamical symmetries for the screened Coulomb potentials and isotropic harmonic oscillators have been studied by Wu and Zeng [Z. B. Wu and J. Y. Zeng, Phys. Rev. A 62,032509 (2000)]. We find the similar properties in the responding systems in a spherical space, whose dynamical symmetries are described by Higgs Algebra. There exists a conserved aphelion and perihelion vector, which, together with angular momentum, constitute the generators of the geometrical symmetry group at the aphelia and perihelia points (r˙=0)(\dot{r}=0).Comment: 8 pages, 1 fi

    A Compact Linear Programming Relaxation for Binary Sub-modular MRF

    Full text link
    We propose a novel compact linear programming (LP) relaxation for binary sub-modular MRF in the context of object segmentation. Our model is obtained by linearizing an l1+l_1^+-norm derived from the quadratic programming (QP) form of the MRF energy. The resultant LP model contains significantly fewer variables and constraints compared to the conventional LP relaxation of the MRF energy. In addition, unlike QP which can produce ambiguous labels, our model can be viewed as a quasi-total-variation minimization problem, and it can therefore preserve the discontinuities in the labels. We further establish a relaxation bound between our LP model and the conventional LP model. In the experiments, we demonstrate our method for the task of interactive object segmentation. Our LP model outperforms QP when converting the continuous labels to binary labels using different threshold values on the entire Oxford interactive segmentation dataset. The computational complexity of our LP is of the same order as that of the QP, and it is significantly lower than the conventional LP relaxation

    Ballistic electron transport in stubbed quantum waveguides: experiment and theory

    Full text link
    We present results of experimental and theoretical investigations of electron transport through stub-shaped waveguides or electron stub tuners (ESTs) in the ballistic regime. Measurements of the conductance G as a function of voltages, applied to different gates V_i (i=bottom, top, and side) of the device, show oscillations in the region of the first quantized plateau which we attribute to reflection resonances. The oscillations are rather regular and almost periodic when the height h of the EST cavity is small compared to its width. When h is increased, the oscillations become less regular and broad depressions in G appear. A theoretical analysis, which accounts for the electrostatic potential formed by the gates in the cavity region, and a numerical computation of the transmission probabilities successfully explains the experimental observations. An important finding for real devices, defined by surface Schottky gates, is that the resonance nima result from size quantization along the transport direction of the EST.Comment: Text 20 pages in Latex/Revtex format, 11 Postscript figures. Phys. Rev. B,in pres

    Out-of-equilibrium singlet-triplet Kondo effect in a single C_60 quantum dot

    Full text link
    We have used an electromigration technique to fabricate a C60\rm{C_{{60}}} single-molecule transistor (SMT). Besides describing our electromigration procedure, we focus and present an experimental study of a single molecule quantum dot containing an even number of electrons, revealing, for two different samples, a clear out-of-equilibrium Kondo effect. Low temperature magneto-transport studies are provided, which demonstrates a Zeeman splitting of the finite bias anomaly.Comment: 6 pages, 4 figure

    Lattice Study of the Massive Schwinger Model with a θ\theta term under L\"uscher's "Admissibility" condition

    Get PDF
    We present a numerical study of the massive two-flavor QED in two dimensions with the gauge action proposed by L\"uscher, which allows only ``admissible'' gauge fields. We find that the admissibility condition does not allow any topology changes by the local updation in Hybrid Monte Carlo algorithm so that the configurations in each topological sector can be generated separately. By developing a new method to sum over different topological sectors, we investigate θ\theta vacuum effects. Combining with domain-wall fermion action, we obtain the fermion mass dependence and θ\theta dependence of the meson masses, which are consistent with the analytic results by mass perturbation in the continuum theory.Comment: 3 pages, Lattice2003(chiral

    Solving the Uncalibrated Photometric Stereo Problem using Total Variation

    Get PDF
    International audienceIn this paper we propose a new method to solve the problem of uncalibrated photometric stereo, making very weak assumptions on the properties of the scene to be reconstructed. Our goal is to solve the generalized bas-relief ambiguity (GBR) by performing a total variation regularization of both the estimated normal field and albedo. Unlike most of the previous attempts to solve this ambiguity, our approach does not rely on any prior information about the shape or the albedo, apart from its piecewise smoothness. We test our method on real images and obtain results comparable to the state-of-the-art algorithms

    Approximate k-state solutions to the Dirac-Yukawa problem based on the spin and pseudospin symmetry

    Full text link
    Using an approximation scheme to deal with the centrifugal (pseudo-centrifugal) term, we solve the Dirac equation with the screened Coulomb (Yukawa) potential for any arbitrary spin-orbit quantum number {\kappa}. Based on the spin and pseudospin symmetry, analytic bound state energy spectrum formulas and their corresponding upper- and lower-spinor components of two Dirac particles are obtained using a shortcut of the Nikiforov-Uvarov method. We find a wide range of permissible values for the spin symmetry constant C_{s} from the valence energy spectrum of particle and also for pseudospin symmetry constant C_{ps} from the hole energy spectrum of antiparticle. Further, we show that the present potential interaction becomes less (more) attractive for a long (short) range screening parameter {\alpha}. To remove the degeneracies in energy levels we consider the spin and pseudospin solution of Dirac equation for Yukawa potential plus a centrifugal-like term. A few special cases such as the exact spin (pseudospin) symmetry Dirac-Yukawa, the Yukawa plus centrifugal-like potentials, the limit when {\alpha} becomes zero (Coulomb potential field) and the non-relativistic limit of our solution are studied. The nonrelativistic solutions are compared with those obtained by other methods.Comment: 21 pages, 6 figure

    Large-scale Bright Fronts in the Solar Corona: A Review of "EIT waves"

    Full text link
    ``EIT waves" are large-scale coronal bright fronts (CBFs) that were first observed in 195 \AA\ images obtained using the Extreme-ultraviolet Imaging Telescope (EIT) onboard the \emph{Solar and Heliospheric Observatory (SOHO)}. Commonly called ``EIT waves", CBFs typically appear as diffuse fronts that propagate pseudo-radially across the solar disk at velocities of 100--700 km s1^{-1} with front widths of 50-100 Mm. As their speed is greater than the quiet coronal sound speed (csc_s\leq200 km s1^{-1}) and comparable to the local Alfv\'{e}n speed (vAv_A\leq1000 km s1^{-1}), they were initially interpreted as fast-mode magnetoacoustic waves (vf=(cs2+vA2)1/2v_{f}=(c_s^2 + v_A^2)^{1/2}). Their propagation is now known to be modified by regions where the magnetosonic sound speed varies, such as active regions and coronal holes, but there is also evidence for stationary CBFs at coronal hole boundaries. The latter has led to the suggestion that they may be a manifestation of a processes such as Joule heating or magnetic reconnection, rather than a wave-related phenomena. While the general morphological and kinematic properties of CBFs and their association with coronal mass ejections have now been well described, there are many questions regarding their excitation and propagation. In particular, the theoretical interpretation of these enigmatic events as magnetohydrodynamic waves or due to changes in magnetic topology remains the topic of much debate.Comment: 34 pages, 19 figure

    Intense agricultural irrigation induced contrasting precipitation changes in Saudi Arabia

    Get PDF
    Groundwater extraction has grown tremendously in Saudi Arabia to meet the irrigation water demand since the 1980s, and irrigation is one of the major anthropogenic factors modulating regional hydroclimate. However, the link between irrigation and hydroclimate is not well understood in a dry region such as Saudi Arabia. In this study, we utilize three different regional climate models to explore the physical mechanisms behind the irrigation impacts in this region. The results are robust across models and show that when irrigation is applied, wetter soil results in higher evapotranspiration and cools the lower atmosphere, leading to an anomalous pressure field and alters vapor transportation. Precipitation decreases locally because of the local cooling effect, whereas additional water vapor convergence enhances precipitation west to the irrigated region. This west–east contrast of precipitation change indicates a possible link between irrigation expansion in the 1980s and subsequent decadal precipitation variations in central Saudi Arabia. We further find from observations a decadal west–east contrast of precipitation changes in Saudi Arabia to support the similar finding in the models. This study implies the importance of including anthropogenic water management in climate models and provides a better understanding of how irrigation impacts local-to-regional climate

    Green function techniques in the treatment of quantum transport at the molecular scale

    Full text link
    The theoretical investigation of charge (and spin) transport at nanometer length scales requires the use of advanced and powerful techniques able to deal with the dynamical properties of the relevant physical systems, to explicitly include out-of-equilibrium situations typical for electrical/heat transport as well as to take into account interaction effects in a systematic way. Equilibrium Green function techniques and their extension to non-equilibrium situations via the Keldysh formalism build one of the pillars of current state-of-the-art approaches to quantum transport which have been implemented in both model Hamiltonian formulations and first-principle methodologies. We offer a tutorial overview of the applications of Green functions to deal with some fundamental aspects of charge transport at the nanoscale, mainly focusing on applications to model Hamiltonian formulations.Comment: Tutorial review, LaTeX, 129 pages, 41 figures, 300 references, submitted to Springer series "Lecture Notes in Physics
    corecore