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Yvain Quéau, François Lauze, Jean-Denis Durou. Solving the Uncalibrated Photometric Stereo
Problem using Total Variation. International Conference on Scale Space and Variational Meth-
ods in Computer Vision - SSVM 2013, Jun 2013, Schloss Seggau, Austria. pp. 270-281, 2013.
<hal-01143231>

HAL Id: hal-01143231

https://hal.archives-ouvertes.fr/hal-01143231

Submitted on 17 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Abstract. In this paper we propose a new method to solve the problem
of uncalibrated photometric stereo, making very weak assumptions on
the properties of the scene to be reconstructed. Our goal is to solve the
generalized bas-relief ambiguity (GBR) by performing a total variation
regularization of both the estimated normal field and albedo. Unlike most
of the previous attempts to solve this ambiguity, our approach does not
rely on any prior information about the shape or the albedo, apart from
its piecewise smoothness. We test our method on real images and obtain
results comparable to the state-of-the-art algorithms.

1 Introduction

Photometric stereo has first been introduced by Woodham in [28] in the early
80’s, using the commonly used Lambertian model to recover both the surface
shape and its albedo, given m > 3 pictures of a scene taken from the same view-
point but under different illumination conditions. In this pioneering work, the
lights are supposed to be known. When these lighting conditions are unknown,
the problem is much harder, as one has to estimate both the normal field and
the lights. Assuming the integrability of the surface [30], this can be done up to
a GBR transformation [4]. This transformation is a 3-parameters (here they will
be called µ, ν and λ) transformation which affects the normal field (and thus
the lights) without changing the images the scene can create or the ability of
the field to be “integrated” into a shape. Despite the few number of parameters
induced by this transformation, estimating them without any assumption on the
scene we want to reconstruct appears to be everything but an easy task, and
most methods addressing this issue assume prior knowledge of shape properties
[14], albedo distribution [3] or presence of outliers which violate the Lambertian
assumption [8].

We introduce a new method for estimating these parameters, which does not
rely on any of those assumptions, except that we say the surface parameters
(albedo and normal field) should “vary few apart from the edges”, which seems
quite a reasonable assumption, and appears to work as well as the state-of-the-
art methods like [10]. Total variation minimization was introduced by [23] for



noise removal because of its edge preserving property, and has become an ubiqui-
tous tool in image analysis. This regularization method has the very interesting
property to preserve edges of an object, depending on its scale [25]. This prop-
erty has, to our knowledge, never been used for photometric stereo, and appears
to be a good way to propose both a new model for uncalibrated photometric
stereo and a novel method for solving the generalized bas-relief ambiguity.

Our paper is organized as follows: after recalling the basic equations to solve
the uncalibrated photometric stereo (UPS) problem (see Sec. 3) up to a GBR,
we propose in Sec. 4 a new method to recover the GBR parameters, before
introducing a new model for the UPS problem (Sec. 5) and a 3-step solution to
it (Sec. 5.2). Finally, we present some results on synthetic and real images in
Sec. 6.

2 Prior Work

Photometric stereo (PS) [28] was introduced in the early 80’s for dealing with
3D-reconstruction, allowing the user to recover both the surface normal field
and the albedo at the same time. In this technique, m images of a scene are
taken from the same viewpoint but under variable lighting conditions. Unlike
traditional stereo 3D-reconstruction, only the visible face can be reconstructed
(PS is thus a 2.5D-reconstruction method), although it has been shown in [15]
that it could be coupled with multi-view techniques to acquire the full shape.

It is an extension of the shape-from-shading problem [17], which is known for
being ill-posed. The use of additional images with different lighting conditions
allows one to solve for the ambiguities of shape-from-shading. Under the condi-
tion of a Lambertian reflectance model and knowledge about the light sources
positions, a very efficient reconstruction can be achieved, recovering up to the
tiniest details of the scene normal field (see Eq. 2 and Eq. 3). An additional step
is then needed to “integrate” the field into a surface. This step, which can be
very tricky, will not be presented in this paper, but the reader could learn about
it in [9,11,18].

The usual assumptions about the number of images (i.e. the number of light
sources) is that m > 3 and the sources should be non-coplanar. Some attempts
have been made to solve the problem with m = 2 in [22], and a very interesting
recent application of the coplanar sources configuration is the 3D-reconstruction
from an outdoor webcam (as the Sun moves within a plane), which is dealt with
by Abrams et al. in [1] and by Ackermann et al. in [2]. In those papers, the
lighting configuration is deduced from GPS coordinates and time.

In this paper, we will focus on the traditional problem with m > 3 non-
coplanar distant light sources, which are supposed to be unknown. The problem
becomes the so-called uncalibrated photometric stereo problem, which was first
addressed by Hayakawa in [14]. Using a SVD, Hayakawa shows that one can solve
the problem up to a linear transformation (see Eq. 4), and given some (strong)
prior knowledge on the normals distribution he gives a way to recover the lights,
normals and albedo. Assuming the estimated normal field should derive from



a surface (the one we want to reconstruct), Yuille and Snow showed in [30]
that one could impose the “integrability constraint” (see Eq. 5) to reduce the
linear ambiguity to a special type of transformation, called generalized bas-relief

(GBR) and presented by Belhumeur et al. in [4] (see Eq. 6).
In order to solve this last ambiguity, several approaches have been presented.

Alldrin proposed in [3] to choose the parameters which minimize the entropy of
the albedo distribution, so as to compress the range of albedo values. This should
work for most simple objects but may perform poorly on some complex materials.
Shi et al. advocated the use for 3-channels colour information in [24] and proved
this information (when available) can resolve the ambiguity. Another approach
is to use the information given by the outliers of the Lambertian model, like
interreflections [7], specularities [8] or shadows [26]. Those approaches suppose
that such outliers are available (which is the case for most real-world scenes) and
that one can detect them, which can be achieved using low-rank approximation as
in [19] and [29]. One could also use another illumination model like the Torrance
and Sparrow model as described in [12], or make no assumption at all about the
model by using a reference object, as in the work of Hertzmann and Seitz [16],
or, assuming an additive non-Lambertian reflectance component, identify pixels
which hold the isotropy and reciprocity constraints like in [27].

However all these methods are either doing some assumptions on the model
(even though these assumptions are mostly realistic) or very difficult to set up
and long to converge. Recently, Favaro and Papadhimitri proposed in [10] a
new method for solving the GBR ambiguity, making very few assumptions on
the model, by using local diffuse maxima. Their method showed to perform as
good or better than previous ones with fewer assumptions, and thus will be our
reference for the experiments.

3 Photometric Stereo

3.1 Calibrated Photometric Stereo

In the sequel, we note Iip the intensity of pixel p in the ith image, with i ∈ [1,m]
andm > 3. ρp is the albedo in pixel p, Np = [Nx, Ny, Nz](p) is the surface normal
in p, and Si = [Si

x, S
i
y, S

i
z]

⊤ will be the light source, in norm and direction, in the

ith image. We assume the light is constant over each image (directional light),
so that Si does not depend on p.

According to the Lambertian model, in every pixel p and every image i, one
can write the equation:

Iip = ρpNpS
i (1)

Writing Ip = [I1p , . . . , I
m
p ], S = [S1, . . . , Sm] and Mp = ρpNp, we obtain the

system of linear equations Ip = MpS. If S is known and is of rank 3 (3 sources
at least are non-coplanar), a least-square solution is given by the Moore-Penrose
pseudo-inverse, and one can recover both the normal and the albedo in p:

M̂p = IpS
+ N̂p =

M̂p

‖M̂p‖
ρ̂p = ‖M̂p‖ (2)



Stacking each image column-wise, we can note I = [I⊤1 , . . . , I⊤|Ω|]
⊤ where Ω

is a mask of the scene within the image and |Ω| is the number of pixels inside
this mask. Similarly, we note M = [M⊤

1 , . . . ,M⊤
|Ω|]

⊤, so that the Lambert’s law

can be written I = MS. We can now rewrite Eq. 2 into Eq. 3 in order to get M̂ :

M̂ = IS+ (3)

3.2 Uncalibrated Photometric Stereo

If the light matrix S is unknown, things are much more complicated. We now
want to estimate both M̂p = ρ̂pN̂p in every pixel p and a 3×m light matrix Ŝ.

Finding Ŝ and M̂ satisfying I = M̂Ŝ is not that hard, as it can be done in a
least square sense using SVD [14]. Indeed, I can be decomposed in I = UWV T ,
with U ∈ R

|Ω|×|Ω|, W ∈ R
|Ω|×m and V ∈ R

m×m. As both lights and normals
lie in R

3, I should be of rank 3, and thus it is reasonable to restrain W to its
first 3 × 3 submatrix, and U and V to their first 3 columns, i.e U ∈ R

|Ω|×3,
W ∈ R

3×3 and V ∈ R
m×3, so that I ≈ UWV T . The solution can be finally

obtained by Eq. 4 :

{
M̂ = UPT

Ŝ = QV T
(4)

where P and Q are two 3× 3 matrices satisfying PTQ = W .
But the solution is not unique, as there is an infinity of such (P,Q) matrices.

Yuille and Snow showed that imposing the integrability constraint on the esti-
mated normal field N̂ reduces this ambiguity to a GBR [30]. The integrability
constraint has the form:

curl N̂ = 0, where curl [a, b, c] =
∂

∂y

a

c
−

∂

∂x

b

c
(5)

and extends immediately to M̂ .
Expanding this equation, they show one can identify 6 over the 9 coefficients

in P−1, and the remaining 3 correspond to the GBR. They propose to fix those
3 to random values, and then the only transformation which would hold both
the Lambertian assumption and the integrability constraint is M̂ ′ = M̂G and
Ŝ′ = G−1Ŝ with G and G−1 given in Eq. 6:

G(µ, ν, λ) =



1 0 0
0 1 0
µ ν λ


 G−1(µ, ν, λ) =




1 0 0
0 1 0

−µ
λ
− ν

λ
1
λ


 (6)

Estimating the best parameters µ, ν and λ is still an open problem for re-
search, especially difficult as the images produced by the transformed normals
and lights are the exact same, and the normal fields are exactly as “integrable”.
We now propose a new method for estimating those parameters.



4 Solving the GBR Ambiguity with Total Variation

4.1 Total Variation of a Vector Field

The total variation of a function is a widely used measure for regularization.
For an almost everywhere differentiable function f : Rn → R, it can be written
as: TV (f) =

∫
Rn |∇f(x)|dx and extends to the class of so-called functions of

bounded variations. In the sequel we take n = 2 as we deal with planar images.
When f takes its values in R

m with m > 1, we define TV (f) =
∫
R2 ‖J(f)‖F dx,

where ‖J(f)‖F is the Frobenius norm of the Jacobian matrix of f , although
other choices may be considered (see [5] for some discussion).

Approximating this in the discrete case, and adapting it to a vector field
M : Ω ⊂ R

2 → R
3, p 7→ [Mx(p),My(p),Mz(p)], we get Eq. 7:

TV (M) =
∑

p∈Ω

√
‖∇Mx(p)‖2 + ‖∇My(p)‖2 + ‖∇Mz(p)‖2 (7)

where ∇ is a suitable discrete gradient operator.

4.2 Why use Total Variation

In [3], Alldrin et al. propose to choose the GBR parameters which minimize
the entropy of the histogram of albedo. They want to favor materials which
are “homogeneous”, i.e. made of a small amount of components. This looks
a reasonable assumption, but the entropy of the albedo can be pretty tricky to
minimize. Besides, this entropy does not consider spatial variation of the albedo,
and when looking for “homogeneous” zones, one would expect that similar albedo
pixels would be close to each other.

When trying to find such homogeneous materials, a similar approach can be
to use the total variation of the albedo: it also favors homogeneous zones as we
would expect the variations of albedo to be small apart from the edges. And,
contrary to standard Tikhonov regularization, these edges are better preserved:
this will lead to different zones in the image, and inside each zone the albedo
would vary few, but we allow it to vary between adjacent zones. This effect of
total variation, called stair-casing, is well-known and studied [21].

Thus, to take into account the spatial consistency, total variation minimiza-
tion of the albedo seems to be a more consistent choice than entropy mini-
mization, which cannot choose between different configurations having the same
histogram of albedo, as shown in Fig. 1. As the albedo is linked to the vector
field M by ρ = ||M ||, and as the GBR transformation G with parameters µ, ν
and λ transforms M into MG(µ, ν, λ), we could look for a GBR transformation
which minimizes TV (||MG(µ, ν, λ)||), i.e estimate the three parameters (µ, ν, λ)
such that:

(µ̂, ν̂, λ̂) = argmin
(µ,ν,λ)

TV (‖MG(µ, ν, λ)‖) (8)



(a) (b) (c) (d) (e) (f)

Fig. 1: Three different albedo configurations and the corresponding histograms:
(a) has a huge entropy value, cf. histogram (d); (b) and (c) have the same small
entropy, cf. histograms (e) and (f), but the spatial distributions of the albedo
are very different. Total variation would tend to favor distributions like (b).

But we can do even better: it seems reasonable to also ensure that the unit
normal field N should vary few inside zones. Thus one can consider minimizing
both the total variation of the albedo and the total variation of the field. As they
are simply linked by M = ρN , we can try to estimate this GBR transformation:

(µ̂, ν̂, λ̂) = argmin
(µ,ν,λ)

TV (MG(µ, ν, λ)) (9)

Doing so, we will favor homogeneous zones in terms of both albedo and
normals, but still allowing edges, so that we do not prevent edges in the albedo
map or in the normal field (which would lead to smooth shapes).

The following calculation gives a hint of it, and shows that minimizing
TV (M) is linked to minimizing simultaneously TV (ρ) and TV (N):

‖J(M)‖F = ‖J(ρN)‖F (10)

= ‖NTJ(ρ) + ρJ(N)‖F (11)

= ‖ (∇ρN)
⊤
+ ρJ(N)‖F (12)

6 ‖ (∇ρN)
⊤
‖F + ‖ρJ(N)‖F (13)

= ‖∇ρ‖2 + ρ ‖J(N)‖F (14)

6 ‖∇ρ‖2 + ‖J(N)‖F (15)

The equality (14) comes on one hand from a direct calculation using the fact
that N has norm 1 and on the other hand from the fact that ρ is positive. The
last inequality comes from the fact that ρ ∈ [0, 1]. From this, it follows that :

TV (M) ≤ TV (ρ) + TV (N) (16)

Note also that
∫
R2 ρ‖J(N)‖F is the ρ-weighted total variation of N and when

minimizing it, it allows for “relaxing” the minimization of TV (N) where the
albedo is low, i.e, where the material is dark. As it is obvious that an albedo
equal to zero induces an ill-posedness in normals, this “relaxation” allows us not
to consider areas which would induce errors in the reconstruction.



5 Our Model

5.1 Formal Definition

One can now rewrite the full problem of uncalibrated (Lambertian) photometric
stereo as the estimation of the field M , the light matrix S and the three GBR
parameters µ, ν and λ. We can write this estimation problem as the constrained
regularized optimization problem of Eq. 17:





(M̂, Ŝ, µ̂, ν̂, λ̂) = argmin
(M,S,µ,ν,λ)

∑
p∈Ω ‖Ip −MpS‖

2

+α TV (MG(µ, ν, λ))

s.t. curl(M) = 0

(17)

• The loss function is here the l2-norm between the data and the images pro-
duced by our estimated field and lights, which is the reprojection error. This
allows a Gaussian random noise on the input data.

• The penalty function is the TV-regularization of the estimated field trans-
formed by a GBR, which as we explained in the previous section will allow
us to estimate the “optimal” parameters µ, ν and λ.

• The constraint is the integrability constraint, which can be rewritten as
∂
∂y

(Mx(p)
Mz(p)

) = ∂
∂x

(
My(p)
Mz(p)

) for any pixel p ∈ Ω.

• α is the weight between the loss function and the penalty function.

To solve the problem in 17 which looks very much like the Rudin-Osher-
Fatemi model [23] apart from the transformation G, one could think separating
the problem into two optimization problems. One of them would be a simple
least-square problem, the other looks very much like a total variation based
zooming problem like in [20], which could be solved by some kind of primal-dual
scheme like [6]. But, although this looks really nice, our tests have shown to be
quite disappointing: finding the right α is really painful as wrong choices of it
will either produce an over-smoothed field or let the GBR unsolved.

We propose another approach which is actually much simpler as it does
not involve such a hyper-parameter. We replace 17 by the following pair of
minimization problems, which must be solved sequentially:





(M̂, Ŝ) = argmin
(M,S)

∑
p∈Ω ‖Ip −MpS‖

2

s.t. curl(M) = 0

(µ̂, ν̂, λ̂) = argmin
(µ,ν,λ)

TV (M̂G(µ, ν, λ))

(18)

After the optimization process, the resulting field is given byM = M̂G(µ̂, ν̂, λ̂),

and the resulting light matrix by S = G−1(µ̂, ν̂, λ̂)Ŝ.



5.2 The Full 3-step Solution

To solve the optimization problem in 18, we adopt the common method used by
(among others) Alldrin et al. in [3] or by Favaro and Papadhimitri in [10]:

1. First find a pair (M,S) which minimizes the loss function. As this is a l2-
norm, this can be achieved using SVD as proposed by Hayakawa in [14]
(see Sec. 3). This gives U ∈ R

|Ω|×3, W ∈ R
3×3 and V ∈ R

m×3, so that
I ≈ UWV T . In the end we get M = UPT and S = QV T , where P and Q

are unknown 3× 3 matrices holding PTQ = W .
2. Then restrict P by integrability. In some sense we “project” M on the space

of integrable fields to force the estimated field to respect the constraint. This
is done identifying 6 out of the 9 cofactors of P (i.e. the coefficients of P−1),
as explained by Yuille and Snow in [30]. We fix the remaining 3 cofactors to
empirical values, assuming they will be “corrected” in the next step.
We know that this linear transformation will not affect the loss function, so
up to this point we have solved the first part of 18.

3. Finally solve for the GBR, to estimate the three parameters µ, ν and λ that
minimize TV (M̂G(µ, ν, λ)), where M̂ = UPT . This is achieved using some
standard convex optimization method. In our tests we used the “fminunc”
function of Matlab which is basically a variant of a Gauss-Newton algorithm,
specifying a literal expression for the gradient which can be easily obtained
by differentiating the penalty function with respect to each parameter.
As the GBR is a linear transformation, the loss function will not be affected,
and we know a GBR maintains integrability, so the constraint is not violated.
Then both the loss function and the penalty function are minimized, and the
constraint is respected. Thus, we can finally compute M̂ = UPTG(µ̂, ν̂, λ̂)

and Ŝ = G−1(µ̂, ν̂, λ̂)P−TWV T which are our field and light solutions.

5.3 Initialization Issues

The total variation being convex but not strictly convex, the starting point
for the gradient descent has to be carefully chosen. In the step 3 of the al-
gorithm above, we initialize the optimization process with the solution to the
l2-regularized problem with λ = 1:

(µ̂0, ν̂0) = argmin
(µ,ν)∈R×R

∑

p∈Ω

‖J(M(p)G(µ, ν, 1))‖2F (19)

which, writing down the Euler-Lagrange equations, gives:

µ̂0 =
∑

p∈Ω

∂Mx

∂x
(p) ∂Mz

∂x
(p) + ∂Mx

∂y
(p) ∂Mz

∂y
(p)

( ∂Mz

∂x
(p))2 + ( ∂Mz

∂y
(p))2

ν̂0 =
∑

p∈Ω

∂My

∂x
(p) ∂Mz

∂x
(p) +

∂My

∂y
(p) ∂Mz

∂y
(p)

( ∂Mz

∂x
(p))2 + ( ∂Mz

∂y
(p))2

(20)

which depends only on the already computed M = UPT field, and thus can be
computed directly.



Problem 9 can then be solved efficiently by a few Gauss-Newton iterations
(less than 10 iterations in every test we ran).

Note that we do not solve this TV problem the usual way: one would expect
to use some algorithm like Chambolle’s [6] to recover the whole field. Here we
do not need doing so because we assume we already have a field M , and we only
want to estimate the 3 parameters of the GBR which transform this field. It is a
much easier 3-parameters problem which can be solved by standard optimization
methods.

6 Experiments

In this section, we give some results obtained with the method described before.
As dealing with outliers like shadows or highlights is not our point in this paper,
we just skip the preprocessing part. We use preprocessed data that can be found
on Papadhimitri’s and Alldrin’s homepages, five set of images from the Yale
Dataface B [13] and synthetic images generated with the Lambertian model.

One image of each set is presented in Fig. 2. Note that the Sphere and Teapot
dataset contain 8 images, Cat, Owl and Horse datasets contain 12 images, the
Doll dataset contains 15 images, and the Faces datasets contain 21 images each.

Fig. 2: One image of each dataset used for validating our method.

We compare in Fig. 3 the recovered normals and depth maps on the Cat
dataset to both a “ground truth” which is the result from calibrated photometric
stereo, and to the results from [10]. Note how close the three results are. Some
rendered images can be found in Fig. 4 and Fig. 5.

We also show in Table 1 a comparison of the angular errors (expressed in de-
grees) between normal fields estimated by uncalibrated photometric stereo tech-
niques and by calibrated photometric stereo. We chose to compare our method
to the Diffuse-Maxima method [10] which seems to be the most efficient known
method, and to Minimum-Entropy [3] because our approach can be seen as an



extension of this one. Our method appears to be as good as the most state-
of-the-art uncalibrated photometric stereo method for Lambertian models, and
slightly faster, even though the tests were made without any special care in the
optimization task, so the method could still be greatly accelerated.

Fig. 3: Normal and depth comparison. From left to right: first, second, and third
components of the normal, and height map. First row: calibrated photometric
stereo. Second row: diffuse maxima [10]. Third row: our method.

(a) (b) (c) (d)

Fig. 4: Cat reconstruction: (a,c) calibrated PS (frontal and lateral views); (b,d)
our method (frontal and lateral views).

(a) (b) (c) (d) (e) (f)

Fig. 5: Faces reconstructions (lateral views), with estimated albedo mapped as
texture.



Dataset Sphere Teapot Cat Doll Owl Horse

ME 5.64 (19.22 s) 24.01 (27.83 s) 13.91 (20.82s) 27.67 (15.18 s) 16.16 (25.15 s) 11.10 (15.80 s)

DM 6.84 (1.59 s) 23.94 (2.09 s) 5.37 (1.22 s) 12.15 (1.11 s) 6.63 (1.07 s) 4.80 (1.62 s)

TV 6.29 (1.40 s) 16.48 (1.41 s) 5.26 (0.67 s) 11.90 (0.69 s) 7.06 (0.76 s) 5.53 (0.67 s)

Dataset YaleB05 P00 YaleB06 P00 YaleB07 P00 YaleB08 P00 YaleB09 P00 YaleB10 P00

ME 9.44 (14.90 s) 18.00 (14.57 s) 12.63 (14.62 s) 19.61 (14.79 s) 17.10 (14.45 s) 9.22 (13.72 s)

DM 6.90 (2.07 s) 11.46 (1.98 s) 8.59 (1.84 s) 11.49 (1.29 s) 13.09 (1.11 s) 10.21 (3.63 s)

TV 13.33 (0.59 s) 7.94 (0.50 s) 10.25 (0.55 s) 8.80 (0.52 s) 7.94 (0.51 s) 8.34 (0.56 s)

Table 1: Performance comparison of TV with the Minimum-Entropy method
(ME) [3] and with the Diffuse-Maxima (DM) method [10]. We give the mean
angular error (in degrees) of the estimated normal field and the CPU time.

7 Conclusion

In this paper, we presented a novel approach to the resolution of the generalized
bas-relief ambiguity, introducing the total variation of the estimated field. We
showed how this approach could produce a new model for uncalibrated photo-
metric stereo and gave a very simple and efficient algorithm for finding a solu-
tion to this problem. Unlike most attempts to solve this issue, our method does
not rely on any property of the scene except its Lambertian reflectance, so the
method should work for any Lambertian dataset. For a real world application
though, it would be necessary to make a preprocessing step on the data in order
to remove the outliers.

We also compared the solution given by our algorithm to the most efficient
known method, and the results show that our method performs as good as it.
The key point of it is the optimization step of the algorithm, which could be
greatly improved in order to get a really fast solver. This would open the doors
to some real-time reconstruction in the wild using photometric stereo, and could
be useful for many applications like augmented reality.
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