17 research outputs found

    Predicting Postfire Douglas-Fir Beetle Attacks and Tree Mortality in the Northern Rocky Mountains

    No full text
    Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) were monitored for 4 years following three wildfires. Logistic regression analyses were used to develop models predicting the probability of attack by Douglas-fir beetle (Dendroctonus pseudotugae Hopkins, 1905) and the probability of Douglas-fir mortality within 4 year following fire. Percent crown volume scorched (crown scorch), cambium injury, diameter at breast height (DBH), and stand density index for Douglas-fir were most important for predicting Douglas-fir beetle attacks. A nonlinear relationship between crown scorch and cambium injury was observed, suggesting that beetles did not preferentially attack trees with both maximum crown scorch and cambium injury, 1 and 2 years following fire. Crown scorch, cambium injury, DBH, and presence/absence of beetle attack were the most important variables for predicting postfire Douglas-fir mortality. As DBH increased, the predicted probability of mortality decreased for unattacked trees but increased for attacked trees. Field sampling suggested that ocular estimated of bark char may not be a reliable predictor of cambium injury. Our results emphasize the important role of Douglas-fir beetle in tree mortality patterns following fire, and the models offer improved prediction of Douglas-fir mortality for use in areas with or without Douglas-fir beetle populations

    Data from: Does biomass growth increase in the largest trees? Flaws, fallacies and alternative analyses

    No full text
    The long-standing view that biomass growth in trees typically follows a rise-and-fall unimodal pattern has been challenged by studies concluding that biomass growth increases with size even among the largest stems in both closed forests and in open competition-free environments. We highlight challenges and pitfalls that influence such interpretations. The ability to observe and calibrate biomass change in large stems requires adequate data regarding these specific stems. Data checking and control procedures can bias estimates of biomass growth and generate false increases with stem size. It is important to distinguish aggregate and individual-level trends: a failure to do so results in flawed interpretations. Our assessment of biomass growth in 706 tropical forest stems indicates that individual biomass growth patterns often plateau for extended periods, with no significant difference in the number of stems indicating positive and negative trends in all but one of the 14 species. Nonetheless, when comparing aggregate growth during the most recent five years, 13 out of our 14 species indicate that biomass growth increases with size even among the largest sizes. Thus, individual and aggregate patterns of biomass growth with size are distinct. Claims concerning general biomass growth patterns for large trees remain unconvincing. We suggest how future studies can improve our knowledge of growth patterns in and among large trees
    corecore