981 research outputs found

    A Coupled-Channels Study of 11Be^{11}Be Coulomb Excitation

    Get PDF
    We study the effects of channel coupling in the excitation of 11Be^{11}Be projectiles incident on heavy targets. The contribution to the excitation from the Coulomb and the nuclear fields in peripheral collisions are considered. Our results are compared with recent data on the excitation of the \halfm state in 11Be^{11}Be projectiles. We show that the experimental results cannot be explained, unless very unusual parameters are used.Comment: 8 pages, 2 Postscript figures available upon request, corrected misprints in eqs. 2 and

    Coulomb Breakup Mechanism of Neutron-Halo Nuclei in a Time-Dependent Method

    Full text link
    The mechanism of the Coulomb breakup reactions of the nuclei with neutron-halo structure is investigated in detail. A time-dependent Schr\"odinger equation for the halo neutron is numerically solved by treating the Coulomb field of a target as an external field. The momentum distribution and the post-acceleration effect of the final fragments are discussed in a fully quantum mechanical way to clarify the limitation of the intuitive picture based on the classical mechanics. The theory is applied to the Coulomb breakup reaction of 11^{11}Be + 208^{208}Pb. The breakup mechanism is found to be different between the channels of jπ=12j^{\pi}=\frac{1}{2}^{-} and 32\frac{3}{2}^{-}, reflecting the underlying structure of 11^{11}Be. The calculated result reproduces the energy spectrum of the breakup fragments reasonably well, but explains only about a half of the observed longitudinal momentum difference.Comment: 15 pages,revtex, 9 figures (available upon request

    A Fermi Surface study of Ba1x_{1-x}Kx_{x}BiO3_{3}

    Full text link
    We present all electron computations of the 3D Fermi surfaces (FS's) in Ba1x_{1-x}Kx_{x}BiO3_{3} for a number of different compositions based on the selfconsistent Korringa-Kohn-Rostoker coherent-potential-approximation (KKR-CPA) approach for incorporating the effects of Ba/K substitution. By assuming a simple cubic structure throughout the composition range, the evolution of the nesting and other features of the FS of the underlying pristine phase is correlated with the onset of various structural transitions with K doping. A parameterized scheme for obtaining an accurate 3D map of the FS in Ba1x_{1-x}Kx_{x}BiO3_{3} for an arbitrary doping level is developed. We remark on the puzzling differences between the phase diagrams of Ba1x_{1-x}Kx_{x}BiO3_{3} and BaPbx_{x}Bi1x_{1-x}O3_{3} by comparing aspects of their electronic structures and those of the end compounds BaBiO3_{3}, KBiO3_3 and BaPbO3_3. Our theoretically predicted FS's in the cubic phase are relevant for analyzing high-resolution Compton scattering and positron-annihilation experiments sensitive to the electron momentum density, and are thus amenable to substantial experimental verification.Comment: 12 pages, 7 figures, to appear in Phys. Rev.

    Phase II study of CC-486 (oral azacitidine) in previously treated patients with locally advanced or metastatic nasopharyngeal carcinoma

    Get PDF
    BACKGROUND: Treatment options are limited for recurrent nasopharyngeal carcinoma (NPC). We report results from a phase II study of CC-486 (oral azacitidine) in advanced NPC. PATIENTS AND METHODS: Patients with locally advanced or metastatic NPC and 1-2 prior treatment regimens received CC-486 300 mg daily on days 1-14 of 21-day cycles until disease progression or unacceptable toxicity. The first 6 patients of Asian-Pacific Islander (API) ethnicity received a reduced dose of 200 mg to preserve safety and tolerability; if well tolerated, subsequent API patients received CC-486 300 mg. The study could advance to stage 2 if > 4 patients achieved a response. Co-primary end-points were overall response rate (ORR) and progression-free survival (independent review). Key secondary end-points were overall survival and safety. RESULTS: Owing to faster-than-anticipated enrolment, 36 patients, including 13 of API ethnicity, were enrolled; the median age was 54.0 years. Most patients were male (81%) and had an Eastern Cooperative Oncology Group performance status 64 1 (97%). Among 25 efficacy-evaluable patients, the ORR was 12%; the median progression-free and overall survival were 4.7 and 18.0 months, respectively. The most common grade III/IV treatment-emergent adverse events were neutropenia (33%) and febrile neutropenia (11%). Twenty-one posttreatment deaths, primarily due to progressive disease or disease complications, and 1 on-treatment death (epistaxis, unrelated to study drug) occurred. The study did not advance to stage 2. CONCLUSION: CC-486 did not show sufficient clinical activity to support further development as monotherapy in this patient population. The safety profile of CC-486 in NPC was consistent with that in other solid tumours

    Theory of Multiphonon Excitation in Heavy-Ion Collisions

    Full text link
    We study the effects of channel coupling in the excitation dynamics of giant resonances in relativistic heavy ions collisions. For this purpose, we use a semiclassical approximation to the Coupled-Channels problem and separate the Coulomb and the nuclear parts of the coupling into their main multipole components. In order to assess the importance of multi-step processes, we neglect the resonance widths and solve the set of coupled equations exactly. Finite widths are then considered. In this case, we handle the coupling of the ground state with the dominant Giant Dipole Resonance exactly and study the excitation of the remaining resonances within the Coupled-Channels Born Approximation. A comparison with recent experimental data is made.Comment: 29 pages, 7 Postscript figures available upon reques

    Dynamical description of the breakup of one-neutron halo nuclei 11Be and 19C

    Full text link
    We investigate the breakup of the one-neutron halo nuclei 11Be and 19C within a dynamical model of the continuum excitation of the projectile. The time evolution of the projectile in coordinate space is described by solving the three-dimensional time dependent Schroedinger equation, treating the projectile-target (both Coulomb and nuclear) interaction as a time dependent external perturbation. The pure Coulomb breakup dominates the relative energy spectra of the fragments in the peak region, while the nuclear breakup is important at higher relative energies. The coherent sum of the two contributions provides a good overall description of the experimental spectra. Cross sections of the first order perturbation theory are derived as a limit of our dynamical model. The dynamical effects are found to be of the order of 10-15% for the beam energies in the range of 60 - 80 MeV/nucleon. A comparison of our results with those of a post form distorted wave Born approximation shows that the magnitudes of the higher order effects are dependent on the theoretical model.Comment: 15 pages, ReVTeX, 5 figures, typos corrected, accepted for publication in Physical Review

    Evaluating pathway enumeration algorithms in metabolic engineering case studies

    Get PDF
    The design of cell factories for the production of compounds involves the search for suitable heterologous pathways. Different strategies have been proposed to infer such pathways, but most are optimization approaches with specific objective functions, not suited to enumerate multiple pathways. In this work, we analyze two pathway enumeration algorithms based on graph representations: the Solution Structure Generation and the Find Path algorithms. Both are capable of enumerating exhaustively multiple pathways using network topology. We study their capabilities and limitations when designing novel heterologous pathways, by applying these methods on two case studies of synthetic metabolic engineering related to the production of butanol and vanillin

    The HERMES Dual-Radiator Ring Imaging Cerenkov Detector

    Full text link
    The construction and use of a dual radiator Ring Imaging Cerenkov(RICH) detector is described. This instrument was developed for the HERMES experiment at DESY which emphasizes measurements of semi-inclusive deep-inelastic scattering. It provides particle identification for pions, kaons, and protons in the momentum range from 2 to 15 GeV, which is essential to these studies. The instrument uses two radiators, C4F10, a heavy fluorocarbon gas, and a wall of silica aerogel tiles. The use of aerogel in a RICH detector has only recently become possible with the development of clear, large homogeneous and hydrophobic aerogel. A lightweight mirror was constructed using a newly perfected technique to make resin-coated carbon-fiber surfaces of optical quality. The photon detector consists of 1934 photomultiplier tubes for each detector half, held in a soft steel matrix to provide shielding against the residual field of the main spectrometer magnet.Comment: 25 pages, 23 figure

    A first-principles approach to electrical transport in atomic-scale nanostructures

    Full text link
    We present a first-principles numerical implementation of Landauer formalism for electrical transport in nanostructures characterized down to the atomic level. The novelty and interest of our method lies essentially on two facts. First of all, it makes use of the versatile Gaussian98 code, which is widely used within the quantum chemistry community. Secondly, it incorporates the semi-infinite electrodes in a very generic and efficient way by means of Bethe lattices. We name this method the Gaussian Embedded Cluster Method (GECM). In order to make contact with other proposed implementations, we illustrate our technique by calculating the conductance in some well-studied systems such as metallic (Al and Au) nanocontacts and C-atom chains connected to metallic (Al and Au) electrodes. In the case of Al nanocontacts the conductance turns out to be quite dependent on the detailed atomic arrangement. On the contrary, the conductance in Au nanocontacts presents quite universal features. In the case of C chains, where the self-consistency guarantees the local charge transfer and the correct alignment of the molecular and electrode levels, we find that the conductance oscillates with the number of atoms in the chain regardless of the type of electrode. However, for short chains and Al electrodes the even-odd periodicity is reversed at equilibrium bond distances.Comment: 14 pages, two-column format, submitted to PR

    Chinese Script vs Plate-Like Precipitation of Beta-Al9Fe2Si2 Phase in an Al-6.5Si-1Fe Alloy

    Get PDF
    The microstructure of a high-purity Al-6.5Si-1Fe(wt pct) alloy after solidification at various cooling rates was investigated. In most of the cases, the monoclinic beta-Al9Fe2Si2 phase was observed as long and thin lamellae. However, at a very slow cooling rate, Febearing precipitates with Chinese script morphology appeared together with lamellae. Further analysis showed all these Chinese script precipitates correspond also to the monoclinic beta phase. This finding stresses that differentiating second phases according to their shape may be misleading
    corecore