423 research outputs found
Management options for pregnant feedlot heifers
Heifers that were 167 days pregnant when slaughtered gained faster and more efficiently than open heifers, or heifers that had been aborted with a prostaglandin analog at 83 or 138 days, unless the slaughter weight was adjusted for the 1.7% lower carcass yield (dressing %). When the slaughter weights for all these management options were adjusted using the carcass yield of open heifers, there was no difference in gain except for the depressed performance associated with late abortions. However, open heifers were 6.7% more efficient than heifers pregnant when slaughtered. Heifers aborted at 138 days had substantially reduced gains and feed conversion. These results indicate that because of increased carcass yield, packers can afford to pay a premium for heifers that are open or have been aborted during the first trimester. Unless a premium is paid for open heifers, pregnant heifers (provided they are sold before calving) sold on a live weight basis might be more profitable because of the apparent increased gain and efficiency
A lower limit on the dark particle mass from dSphs
We use dwarf spheroidal galaxies as a tool to attempt to put precise lower
limits on the mass of the dark matter particle, assuming it is a sterile
neutrino. We begin by making cored dark halo fits to the line of sight velocity
dispersions as a function of projected radius (taken from Walker et al. 2007)
for six of the Milky Way's dwarf spheroidal galaxies. We test Osipkov-Merritt
velocity anisotropy profiles, but find that no benefit is gained over constant
velocity anisotropy. In contrast to previous attempts, we do not assume any
relation between the stellar velocity dispersions and the dark matter ones, but
instead we solve directly for the sterile neutrino velocity dispersion at all
radii by using the equation of state for a partially degenerate neutrino gas
(which ensures hydrostatic equilibrium of the sterile neutrino halo). This
yields a 1:1 relation between the sterile neutrino density and velocity
dispersion, and therefore gives us an accurate estimate of the Tremaine-Gunn
limit at all radii. By varying the sterile neutrino particle mass, we locate
the minimum mass for all six dwarf spheroidals such that the Tremaine-Gunn
limit is not exceeded at any radius (in particular at the centre). We find
sizeable differences between the ranges of feasible sterile neutrino particle
mass for each dwarf, but interestingly there exists a small range 270-280eV
which is consistent with all dSphs at the 1- level.Comment: 13 pages, 2 figures, 1 tabl
Validation of vertical ground heat exchanger design methodologies
[EN] This work presents a validation of two common methods for designing vertical ground heat exchangers. Both a simulation-based design tool and the ASHRAE handbook design equation are used to find design lengths for four different real systems, using actual experimental data, including building loads as well as physical parameters as inputs. The measured minimum and maximum ground heat exchanger exiting fluid temperatures were used as the design constraint. The simulation-based design tool predicted the borehole length to within 6% in all cases, while the ASHRAE handbook design equation yielded systems with errors from ¿21% to 167%. Most of this error can be explained by the way loads are represented in the ASHRAE handbook equation, with differences in the borehole thermal resistance also playing a smaller part. TheASHRAE handbook equation relies on a very simple load representation; although this allows it to be used as a simple hand calculation, it also precludes it achieving acceptable accuracy. It does not appear to be possible to revise the ASHRAE handbook equation so as to both significantly improve its accuracy and allow its use in a simple hand calculation.Cullin, J.; Spitler, JD.; Montagud Montalvá, CI.; Ruiz Calvo, F.; Rees, S.; Naicker, S.; Konecny, P.... (2015). Validation of vertical ground heat exchanger design methodologies. Science and Technology for the Built Environment. 21(2):137-149. doi:10.1080/10789669.2014.974478S13714921
Systemic microvascular shunting through hyperdynamic capillaries after acute physiological disturbances following cardiopulmonary bypass
Introduction: Previously we showed that cardiopulmonary bypass during cardiac surgery is associated with reduced sublingual microcirculatory perfusion and oxygenation. It has been suggested that impaired microcirculatory perfusion may be paralleled by increased heterogeneity of flow in the microvascular bed, possibly leading to arteriovenous shunting. Here we investigated our hypothesis that acute hemodynamic disturbances during extracorporeal circulation indeed lead to microcirculatory heterogeneity with hyperdynamic capillary perfusion and reduced systemic oxygen extraction. Methods: In this single-center prospective observational study, patients undergoing cardiac surgery with (n=18) or without (n=13) cardiopulmonary bypass (CPB) were included. Perioperative microcirculatory perfusion was assessed sublingually with sidestream dark field imaging and recordings were quantified for microcirculatory heterogeneity and hyperdynamic capillary perfusion. The relationship with hemodynamic and oxygenation parameters was analyzed. Results: Microcirculatory heterogeneity index increased substantially after onset of CPB (0.5 [0.0-0.9] to 1.0 [0.3-1.3]; P=0.031) but not during off-pump surgery. Median capillary red blood cell (RBC) velocity increased intraoperatively in the CPB group only (1600 [913-2500 microm/s] versus 380 [190-480 microm/s]; P<0.001), with 31% of capillaries supporting high RBC velocities (>2000 microm/s). Hyperdynamic microcirculatory perfusion was associated with reduced arteriovenous oxygen difference and systemic oxygen consumption during and after CPB. Conclusions: The current study provides the first direct human evidence for a microvascular shunting phenomenon through hyperdynamic capillaries following acute physiological disturbances after onset of cardiopulmonary bypass. The hypothesis of impaired systemic oxygen offloading caused by hyperdynamic capillaries was supported by reduced blood arteriovenous oxygen difference and low systemic oxygen extraction associated with cardiopulmonary bypass
Nonlinear porous medium flow with fractional potential pressure
We study a porous medium equation, with nonlocal diffusion effects given by
an inverse fractional Laplacian operator. We pose the problem in n-dimensional
space for all t>0 with bounded and compactly supported initial data, and prove
existence of a weak and bounded solution that propagates with finite speed, a
property that is nor shared by other fractional diffusion models.Comment: 32 pages, Late
Indirect Dark Matter Detection from Dwarf Satellites: Joint Expectations from Astrophysics and Supersymmetry
We present a general methodology for determining the gamma-ray flux from
annihilation of dark matter particles in Milky Way satellite galaxies, focusing
on two promising satellites as examples: Segue 1 and Draco. We use the
SuperBayeS code to explore the best-fitting regions of the Constrained Minimal
Supersymmetric Standard Model (CMSSM) parameter space, and an independent MCMC
analysis of the dark matter halo properties of the satellites using published
radial velocities. We present a formalism for determining the boost from halo
substructure in these galaxies and show that its value depends strongly on the
extrapolation of the concentration-mass (c(M)) relation for CDM subhalos down
to the minimum possible mass. We show that the preferred region for this
minimum halo mass within the CMSSM with neutralino dark matter is ~10^-9-10^-6
solar masses. For the boost model where the observed power-law c(M) relation is
extrapolated down to the minimum halo mass we find average boosts of about 20,
while the Bullock et al (2001) c(M) model results in boosts of order unity. We
estimate that for the power-law c(M) boost model and photon energies greater
than a GeV, the Fermi space-telescope has about 20% chance of detecting a dark
matter annihilation signal from Draco with signal-to-noise greater than 3 after
about 5 years of observation
Dark Matter signals from Draco and Willman 1: Prospects for MAGIC II and CTA
The next generation of ground-based Imaging Air Cherenkov Telescopes (IACTs)
will play an important role in indirect dark matter searches. In this article,
we consider two particularly promising candidate sources for dark matter
annihilation signals, the nearby dwarf galaxies Draco and Willman 1, and study
the prospects of detecting such a signal for the soon-operating MAGIC II
telescope system as well as for the planned installation of CTA, taking special
care of describing the experimental features that affect the detectional
prospects. For the first time in such a study, we fully take into account the
effect of internal bremsstrahlung, which has recently been shown to
considerably enhance, in some cases, the gamma-ray flux at the high energies
where Atmospheric Cherenkov Telescopes operate, thus leading to significantly
harder annihilation spectra than traditionally considered. While the detection
of the spectral features introduced by internal bremsstrahlung would constitute
a smoking gun signature for dark matter annihilation, we find that for most
models the overall flux still remains at a level that will be challenging to
detect unless one adopts rather (though by no means overly) optimistic
astrophysical assumptions about the distribution of dark matter in the dwarfs.Comment: 10 pages, 4 figures, minor changes, matches the published version
(JCAP
The Effects of Atmospheric Dispersion on High-Resolution Solar Spectroscopy
We investigate the effects of atmospheric dispersion on observations of the
Sun at the ever-higher spatial resolutions afforded by increased apertures and
improved techniques. The problems induced by atmospheric refraction are
particularly significant for solar physics because the Sun is often best
observed at low elevations, and the effect of the image displacement is not
merely a loss of efficiency, but the mixing of information originating from
different points on the solar surface. We calculate the magnitude of the
atmospheric dispersion for the Sun during the year and examine the problems
produced by this dispersion in both spectrographic and filter observations. We
describe an observing technique for scanning spectrograph observations that
minimizes the effects of the atmospheric dispersion while maintaining a regular
scanning geometry. Such an approach could be useful for the new class of
high-resolution solar spectrographs, such as SPINOR, POLIS, TRIPPEL, and ViSP
Non-minimally coupled dark matter: effective pressure and structure formation
We propose a phenomenological model in which a non-minimal coupling between
gravity and dark matter is present in order to address some of the apparent
small scales issues of \lcdm model. When described in a frame in which gravity
dynamics is given by the standard Einstein-Hilbert action, the non-minimal
coupling translates into an effective pressure for the dark matter component.
We consider some phenomenological examples and describe both background and
linear perturbations. We show that the presence of an effective pressure may
lead these scenarios to differ from \lcdm at the scales where the non-minimal
coupling (and therefore the pressure) is active. In particular two effects are
present: a pressure term for the dark matter component that is able to reduce
the growth of structures at galactic scales, possibly reconciling simulations
and observations; an effective interaction term between dark matter and baryons
that could explain observed correlations between the two components of the
cosmic fluid within Tully-Fisher analysis.Comment: 18 pages, 6 figures, references added. Published in JCA
Annihilation vs. Decay: Constraining dark matter properties from a gamma-ray detection
Most proposed dark matter candidates are stable and are produced thermally in
the early Universe. However, there is also the possibility of unstable (but
long-lived) dark matter, produced thermally or otherwise. We propose a strategy
to distinguish between dark matter annihilation and/or decay in the case that a
clear signal is detected in gamma-ray observations of Milky Way dwarf
spheroidal galaxies with gamma-ray experiments. The sole measurement of the
energy spectrum of an indirect signal would render the discrimination between
these cases impossible. We show that by examining the dependence of the
intensity and energy spectrum on the angular distribution of the emission, the
origin could be identified as decay, annihilation, or both. In addition, once
the type of signal is established, we show how these measurements could help to
extract information about the dark matter properties, including mass,
annihilation cross section, lifetime, dominant annihilation and decay channels,
and the presence of substructure. Although an application of the approach
presented here would likely be feasible with current experiments only for very
optimistic dark matter scenarios, the improved sensitivity of upcoming
experiments could enable this technique to be used to study a wider range of
dark matter models.Comment: 29 pp, 8 figs; replaced to match published version (minor changes and
some new references
- …