14 research outputs found

    Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurement

    Get PDF
    The Heisenberg uncertainty principle states that the product of the noise in a position measurement and the momentum disturbance caused by that measurement should be no less than the limit set by Planck's constant, hbar/2, as demonstrated by Heisenberg's thought experiment using a gamma-ray microscope. Here I show that this common assumption is false: a universally valid trade-off relation between the noise and the disturbance has an additional correlation term, which is redundant when the intervention brought by the measurement is independent of the measured object, but which allows the noise-disturbance product much below Planck's constant when the intervention is dependent. A model of measuring interaction with dependent intervention shows that Heisenberg's lower bound for the noise-disturbance product is violated even by a nearly nondisturbing, precise position measuring instrument. An experimental implementation is also proposed to realize the above model in the context of optical quadrature measurement with currently available linear optical devices.Comment: Revtex, 6 page

    Co-limitation towards lower latitudes shapes global forest diversity gradients

    Get PDF
    The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Predictive responses in Parkinson's disease: manual keypresses and saccadic eye movements to regular stimulus events

    No full text
    In a coincidence timing task, Parkinsonian patients and a control group were instructed to synchronise a keypress with the onset of a visual signal which had been preceded by a regular train of warning signals. Although the Parkinsonian group had previously exhibited slower reactions in a conventional simple reaction-time task, they were able to generate predictive responses that fell as close to the target onset as the controls' but showed greater variability. In a second experiment, Parkinsonian patients and controls made saccadic eye movements to a visual target that stepped at regular intervals between two fixed locations. After a few trials all the subjects tended to make predictive saccades that were initiated before the target excursion. However, the Parkinsonian group were slower to develop this strategy and when they did their saccades became considerably more hypometric than those of the controls. Both groups were able to maintain predictive responding even when the visual target disappeared and responses were paced by a buzzer. We concluded that Parkinsonian patients are capable ofinitiating predictive responses of the eye and the hand, at least in some circumstances, but such responses tend to be inaccurate in execution. This, in turn, may dispose the Parkinsonian patient against predictive movement

    Fauna and biostratigraphy of the Cambrian (Series 2, Stage 4; Ordian) Tempe Formation (Pertaoorrta Group), Amadeus Basin, Northern Territory

    No full text
    corecore