443 research outputs found

    Hamiltonian Formalism of the de-Sitter Invariant Special Relativity

    Full text link
    Lagrangian of the Einstein's special relativity with universal parameter cc (SRc\mathcal{SR}_c) is invariant under Poincar\'e transformation which preserves Lorentz metric ημν\eta_{\mu\nu}. The SRc\mathcal{SR}_c has been extended to be one which is invariant under de Sitter transformation that preserves so called Beltrami metric BμνB_{\mu\nu}. There are two universal parameters cc and RR in this Special Relativity (denote it as SRcR\mathcal{SR}_{cR}). The Lagrangian-Hamiltonian formulism of SRcR\mathcal{SR}_{cR} is formulated in this paper. The canonic energy, canonic momenta, and 10 Noether charges corresponding to the space-time's de Sitter symmetry are derived. The canonical quantization of the mechanics for SRcR\mathcal{SR}_{cR}-free particle is performed. The physics related to it is discussed.Comment: 24 pages, no figur

    Two Energy Release Processes for CMEs: MHD Catastrophe and Magnetic Reconnection

    Full text link
    It remains an open question how magnetic energy is rapidly released in the solar corona so as to create solar explosions such as solar flares and coronal mass ejections (CMEs). Recent studies have confirmed that a system consisting of a flux rope embedded in a background field exhibits a catastrophic behavior, and the energy threshold at the catastrophic point may exceed the associated open field energy. The accumulated free energy in the corona is abruptly released when the catastrophe takes place, and it probably serves as the main means of energy release for CMEs at least in the initial phase. Such a release proceeds via an ideal MHD process in contrast with nonideal ones such as magnetic reconnection. The catastrophe results in a sudden formation of electric current sheets, which naturally provide proper sites for fast magnetic reconnection. The reconnection may be identified with a solar flare associated with the CME on one hand, and produces a further acceleration of the CME on the other. On this basis, several preliminary suggestions are made for future observational investigations, especially with the proposed KuaFu satellites, on the roles of the MHD catastrophe and magnetic reconnection in the magnetic energy release associated with CMEs and flares.Comment: 7 pages, 4 figures, Adv. Spa. Res., in press

    Biharmonic pattern selection

    Full text link
    A new model to describe fractal growth is discussed which includes effects due to long-range coupling between displacements uu. The model is based on the biharmonic equation 4u=0\nabla^{4}u =0 in two-dimensional isotropic defect-free media as follows from the Kuramoto-Sivashinsky equation for pattern formation -or, alternatively, from the theory of elasticity. As a difference with Laplacian and Poisson growth models, in the new model the Laplacian of uu is neither zero nor proportional to uu. Its discretization allows to reproduce a transition from dense to multibranched growth at a point in which the growth velocity exhibits a minimum similarly to what occurs within Poisson growth in planar geometry. Furthermore, in circular geometry the transition point is estimated for the simplest case from the relation rL/e1/2r_{\ell}\approx L/e^{1/2} such that the trajectories become stable at the growing surfaces in a continuous limit. Hence, within the biharmonic growth model, this transition depends only on the system size LL and occurs approximately at a distance 60%60 \% far from a central seed particle. The influence of biharmonic patterns on the growth probability for each lattice site is also analysed.Comment: To appear in Phys. Rev. E. Copies upon request to [email protected]

    Molecular mechanisms of APC/C release from spindle assembly checkpoint inhibition by APC/C SUMOylation

    Get PDF
    The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase that controls cell cycle transitions. Its regulation by the spindle assembly checkpoint (SAC) is coordinated with the attachment of sister chromatids to the mitotic spindle. APC/C SUMOylation on APC4 ensures timely anaphase onset and chromosome segregation. To understand the structural and functional consequences of APC/C SUMOylation, we reconstituted SUMOylated APC/C for electron cryo-microscopy and biochemical analyses. SUMOylation of the APC/C causes a substantial rearrangement of the WHB domain of APC/C's cullin subunit (APC2(WHB)). Although APC/C-Cdc20 SUMOylation results in a modest impact on normal APC/C-Cdc20 activity, repositioning APC2(WHB) reduces the affinity of APC/C-Cdc20 for the mitotic checkpoint complex (MCC), the effector of the SAC. This attenuates MCC-mediated suppression of APC/C-Cdc20 activity, allowing for more efficient ubiquitination of APC/C-Cdc20 substrates in the presence of the MCC. Thus, SUMOylation stimulates the reactivation of APC/C-Cdc20 when the SAC is silenced, contributing to timely anaphase onset.Cancer Signaling networks and Molecular Therapeutic

    Thermodynamic interpolation for the simulation of two-phase flow of non-ideal mixtures

    Get PDF
    This paper describes the development and application of a technique for the rapid interpolation of thermodynamic properties of mixtures for the purposes of simulating two-phase flow. The technique is based on adaptive inverse interpolation and can be applied to any Equation of State and multicomponent mixture. Following analysis of its accuracy, the method is coupled with a two-phase flow model, based on the homogeneous equilibrium mixture assumption, and applied to the simulation of flows of carbon dioxide (CO2) rich mixtures. This coupled flow model is used to simulate the experimental decompression of binary and quinternary mixtures. It is found that the predictions are in good agreement with the experimental data and that the interpolation approach provides a flexible, robust means of obtaining thermodynamic properties for use in flow models

    Matter rogue wave in Bose-Einstein condensates with attractive atomic interaction

    Full text link
    We investigate the matter rogue wave in Bose-Einstein Condensates with attractive interatomic interaction analytically and numerically. Our results show that the formation of rogue wave is mainly due to the accumulation of energy and atoms toward to its central part; Rogue wave is unstable and the decay rate of the atomic number can be effectively controlled by modulating the trapping frequency of external potential. The numerical simulation demonstrate that even a small periodic perturbation with small modulation frequency can induce the generation of a near-ideal matter rogue wave. We also give an experimental protocol to observe this phenomenon in Bose-Einstein Condensates

    Nitric oxide and cyclic nucleotides: Their roles in junction dynamics and spermatogenesis

    Get PDF
    Spermatogenesis is a highly complicated process in which functional spermatozoa (haploid, 1n) are generated from primitive mitotic spermatogonia (diploid, 2n). This process involves the differentiation and transformation of several types of germ cells as spermatocytes and spermatids undergo meiosis and differentiation. Due to its sophistication and complexity, testis possesses intrinsic mechanisms to modulate and regulate different stages of germ cell development under the intimate and indirect cooperation with Sertoli and Leydig cells, respectively. Furthermore, developing germ cells must translocate from the basal to the apical (adluminal) compartment of the seminiferous epithelium. Thus, extensive junction restructuring must occur to assist germ cell movement. Within the seminiferous tubules, three principal types of junctions are found namely anchoring junctions, tight junctions, and gap junctions. Other less studied junctions are desmosome-like junctions and hemidesmosome junctions. With these varieties of junction types, testes are using different regulators to monitor junction turnover. Among the uncountable junction modulators, nitric oxide (NO) is a prominent candidate due to its versatility and extensive downstream network. NO is synthesized by nitric oxide synthase (NOS). Three traditional NOS, specified as endothelial NOS (eNOS), inducible NOS (iNOS), and neuronal NOS (nNOS), and one testis-specific nNOS (TnNOS) are found in the testis. For these, eNOS and iNOS were recently shown to have putative junction regulation properties. More important, these two NOSs likely rely on the downstream soluble guanylyl cyclase/cGMP/protein kinase G signaling pathway to regulate the structural components at the tight junctions and adherens junctions in the testes. Apart from the involvement in junction regulation, NOS/NO also participates in controlling the levels of cytokines and hormones in the testes. On the other hand, NO is playing a unique role in modulating germ cell viability and development, and indirectly acting on some aspects of male infertility and testicular pathological conditions. Thus, NOS/NO bears an irreplaceable role in maintaining the homeostasis of the microenvironment in the seminiferous epithelium via its different downstream signaling pathways

    SYMBA: An end-to-end VLBI synthetic data generation pipeline: Simulating Event Horizon Telescope observations of M 87

    Get PDF
    Context. Realistic synthetic observations of theoretical source models are essential for our understanding of real observational data. In using synthetic data, one can verify the extent to which source parameters can be recovered and evaluate how various data corruption effects can be calibrated. These studies are the most important when proposing observations of new sources, in the characterization of the capabilities of new or upgraded instruments, and when verifying model-based theoretical predictions in a direct comparison with observational data. Aims. We present the SYnthetic Measurement creator for long Baseline Arrays (SYMBA), a novel synthetic data generation pipeline for Very Long Baseline Interferometry (VLBI) observations. SYMBA takes into account several realistic atmospheric, instrumental, and calibration effects. Methods. We used SYMBA to create synthetic observations for the Event Horizon Telescope (EHT), a millimetre VLBI array, which has recently captured the first image of a black hole shadow. After testing SYMBA with simple source and corruption models, we study the importance of including all corruption and calibration effects, compared to the addition of thermal noise only. Using synthetic data based on two example general relativistic magnetohydrodynamics (GRMHD) model images of M 87, we performed case studies to assess the image quality that can be obtained with the current and future EHT array for different weather conditions. Results. Our synthetic observations show that the effects of atmospheric and instrumental corruptions on the measured visibilities are significant. Despite these effects, we demonstrate how the overall structure of our GRMHD source models can be recovered robustly with the EHT2017 array after performing calibration steps, which include fringe fitting, a priori amplitude and network calibration, and self-calibration. With the planned addition of new stations to the EHT array in the coming years, images could be reconstructed with higher angular resolution and dynamic range. In our case study, these improvements allowed for a distinction between a thermal and a non-thermal GRMHD model based on salient features in reconstructed images
    corecore