4 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Current threats faced by Neotropical parrot populations

    No full text
    Berkunsky I, Quillfeldt P, Brightsmith DJ, et al. Current threats faced by Neotropical parrot populations. Biological Conservation. 2017;214:278-287.Psittaciformes (parrots, cockatoos) are among the most endangered birds, with 31% of Neotropical species under threat. The drivers of this situation appear to be manifold and mainly of anthropogenic origin. However, this assessment is based on the last extensive consultation about the conservation situation of parrots carried out in the 1990s. Given the rapid development of anthropogenic threats, updated data are needed to strategize conservation actions. Using a population approach, we addressed this need through a wide-ranging consultation involving biologists, wildlife managers, government agencies and non-governmental conservation organizations. We gathered up-to-date information on threats affecting 192 populations of 96 Neotropical parrot species across 21 countries. Moreover, we investigated associations among current threats and population trends. Many populations were affected by multiple threats. Agriculture, Capture for the Pet Trade, Logging, each of them affected > 55% of the populations, suggesting a higher degree of risk than previously thought. In contrast to previous studies at the species level, our study showed that the threat most closely associated with decreasing population trends is now Capture for the local Pet Trade. Other threats associated with decreasing populations include Small-holder Farming, Rural Population Pressure, Nest Destruction by Poachers, Agro-industry Grazing, Small-holder Grazing, and Capture for the international Pet Trade. Conservation actions have been implemented on < 20% of populations. Our results highlight the importance of a population-level approach in revealing the extent of threats to wild populations. It is critical to increase the scope of conservation actions to reduce the capture of wild parrots for pets

    Pan-cancer analysis of whole genomes

    No full text
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation; analyses timings and patterns of tumour evolution; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity; and evaluates a range of more-specialized features of cancer genomes
    corecore