475 research outputs found

    Functional regulation of FEN1 nuclease and its link to cancer

    Get PDF
    Flap endonuclease-1 (FEN1) is a member of the Rad2 structure-specific nuclease family. FEN1 possesses FEN, 5â€Č-exonuclease and gap-endonuclease activities. The multiple nuclease activities of FEN1 allow it to participate in numerous DNA metabolic pathways, including Okazaki fragment maturation, stalled replication fork rescue, telomere maintenance, long-patch base excision repair and apoptotic DNA fragmentation. Here, we summarize the distinct roles of the different nuclease activities of FEN1 in these pathways. Recent biochemical and genetic studies indicate that FEN1 interacts with more than 30 proteins and undergoes post-translational modifications. We discuss how FEN1 is regulated via these mechanisms. Moreover, FEN1 interacts with five distinct groups of DNA metabolic proteins, allowing the nuclease to be recruited to a specific DNA metabolic complex, such as the DNA replication machinery for RNA primer removal or the DNA degradosome for apoptotic DNA fragmentation. Some FEN1 interaction partners also stimulate FEN1 nuclease activities to further ensure efficient action in processing of different DNA structures. Post-translational modifications, on the other hand, may be critical to regulate protein–protein interactions and cellular localizations of FEN1. Lastly, we also review the biological significance of FEN1 as a tumor suppressor, with an emphasis on studies of human mutations and mouse models

    Quasiparticle picture of high temperature superconductors in the frame of Fermi liquid with the fermion condensate

    Full text link
    A model of a Fermi liquid with the fermion condensate (FC) is applied to the consideration of quasiparticle excitations in high temperature superconductors, in their superconducting and normal states. Within our model the appearance of the fermion condensate presents a quantum phase transition, that separates the regions of normal and strongly correlated electron liquids. Beyond the phase transition point the quasiparticle system is divided into two subsystems, one containing normal quasiparticles and the other --- fermion condensate localized at the Fermi surface and characterized by almost dispersionless single-particle excitations. In the superconducting state the quasiparticle dispersion in systems with FC can be presented by two straight lines, characterized by effective masses MFC∗M^*_{FC} and ML∗M^*_L, respectively, and intersecting near the binding energy which is of the order of the superconducting gap. This same quasiparticle picture persists in the normal state, thus manifesting itself over a wide range of temperatures as new energy scales. Arguments are presented that fermion systems with FC have features of a quantum protectorate.Comment: 12 pages, Late

    Algebraic Quantization, Good Operators and Fractional Quantum Numbers

    Get PDF
    The problems arising when quantizing systems with periodic boundary conditions are analysed, in an algebraic (group-) quantization scheme, and the ``failure" of the Ehrenfest theorem is clarified in terms of the already defined notion of {\it good} (and {\it bad}) operators. The analysis of ``constrained" Heisenberg-Weyl groups according to this quantization scheme reveals the possibility for new quantum (fractional) numbers extending those allowed for Chern classes in traditional Geometric Quantization. This study is illustrated with the examples of the free particle on the circumference and the charged particle in a homogeneous magnetic field on the torus, both examples featuring ``anomalous" operators, non-equivalent quantization and the latter, fractional quantum numbers. These provide the rationale behind flux quantization in superconducting rings and Fractional Quantum Hall Effect, respectively.Comment: 29 pages, latex, 1 figure included with EPSF. Revised version with minor changes intended to clarify notation. Acepted for publication in Comm. Math. Phy

    Research of Gravitation in Flat Minkowski Space

    Full text link
    In this paper it is introduced and studied an alternative theory of gravitation in flat Minkowski space. Using an antisymmetric tensor, which is analogous to the tensor of electromagnetic field, a non-linear connection is introduced. It is very convenient for studying the perihelion/periastron shift, deflection of the light rays near the Sun and the frame dragging together with geodetic precession, i.e. effects where angles are involved. Although the corresponding results are obtained in rather different way, they are the same as in the General Relativity. The results about the barycenter of two bodies are also the same as in the General Relativity. Comparing the derived equations of motion for the nn-body problem with the Einstein-Infeld-Hoffmann equations, it is found that they differ from the EIH equations by Lorentz invariant terms of order c−2c^{-2}.Comment: 28 page

    Ultrasound attenuation in gap-anisotropic systems

    Get PDF
    Transverse ultrasound attenuation provides a weakly-coupled probe of momentum current correlations in electronic systems. We develop a simple theory for the interpretation of transverse ultrasound attenuation coefficients in systems with nodal gap anisotropy. Applying this theory we show how ultrasound can delineate between extended-s and d-wave scenarios for the cuprate superconductors.Comment: Uuencode file: 4 pages (Revtex), 3 figures. Some references adde

    Hidden symmetry and knot solitons in a charged two-condensate Bose system

    Full text link
    We show that a charged two-condensate Ginzburg-Landau model or equivalently a Gross-Pitaevskii functional for two charged Bose condensates, can be mapped onto a version of the nonlinear O(3) σ\sigma-model. This implies in particular that such a system possesses a hidden O(3) symmetry and allows for the formation of stable knotted solitons. The results, in particular, should be relevant to the superconducting MgB_2.Comment: This version will appear in Phys. Rev. B, added a comment on the case when condensates in two bands do not independently conserve, also added a figure and references to experimental papers on MgB_2 (for which our study is relevant). Miscellaneous links on knot solitons are also available at the homepage of one of the authors http://www.teorfys.uu.se/PEOPLE/egor/ . Animations of knot solitons are available at http://users.utu.fi/h/hietarin/knots/c45_p2.mp

    Angle-resolved photoemission in doped charge-transfer Mott insulators

    Get PDF
    A theory of angle-resolved photoemission (ARPES) in doped cuprates and other charge-transfer Mott insulators is developed taking into account the realistic (LDA+U) band structure, (bi)polaron formation due to the strong electron-phonon interaction, and a random field potential. In most of these materials the first band to be doped is the oxygen band inside the Mott-Hubbard gap. We derive the coherent part of the ARPES spectra with the oxygen hole spectral function calculated in the non-crossing (ladder) approximation and with the exact spectral function of a one-dimensional hole in a random potential. Some unusual features of ARPES including the polarisation dependence and spectral shape in YBa2Cu3O7 and YBa2Cu4O8 are described without any Fermi-surface, large or small. The theory is compatible with the doping dependence of kinetic and thermodynamic properties of cuprates as well as with the d-wave symmetry of the superconducting order parameter.Comment: 8 pages (RevTeX), 10 figures, submitted to Phys. Rev.

    Dynamic Evolution Model of Isothermal Voids and Shocks

    Full text link
    We explore self-similar hydrodynamic evolution of central voids embedded in an isothermal gas of spherical symmetry under the self-gravity. More specifically, we study voids expanding at constant radial speeds in an isothermal gas and construct all types of possible void solutions without or with shocks in surrounding envelopes. We examine properties of void boundaries and outer envelopes. Voids without shocks are all bounded by overdense shells and either inflows or outflows in the outer envelope may occur. These solutions, referred to as type X\mathcal{X} void solutions, are further divided into subtypes XI\mathcal{X}_{\rm I} and XII\mathcal{X}_{\rm II} according to their characteristic behaviours across the sonic critical line (SCL). Void solutions with shocks in envelopes are referred to as type Z\mathcal{Z} voids and can have both dense and quasi-smooth edges. Asymptotically, outflows, breezes, inflows, accretions and static outer envelopes may all surround such type Z\mathcal{Z} voids. Both cases of constant and varying temperatures across isothermal shock fronts are analyzed; they are referred to as types ZI\mathcal{Z}_{\rm I} and ZII\mathcal{Z}_{\rm II} void shock solutions. We apply the `phase net matching procedure' to construct various self-similar void solutions. We also present analysis on void generation mechanisms and describe several astrophysical applications. By including self-gravity, gas pressure and shocks, our isothermal self-similar void (ISSV) model is adaptable to various astrophysical systems such as planetary nebulae, hot bubbles and superbubbles in the interstellar medium as well as supernova remnants.Comment: 24 pages, 13 figuers, accepted by ApS

    Dynamic Evolution of a Quasi-Spherical General Polytropic Magnetofluid with Self-Gravity

    Full text link
    In various astrophysical contexts, we analyze self-similar behaviours of magnetohydrodynamic (MHD) evolution of a quasi-spherical polytropic magnetized gas under self-gravity with the specific entropy conserved along streamlines. In particular, this MHD model analysis frees the scaling parameter nn in the conventional polytropic self-similar transformation from the constraint of n+Îł=2n+\gamma=2 with Îł\gamma being the polytropic index and therefore substantially generalizes earlier analysis results on polytropic gas dynamics that has a constant specific entropy everywhere in space at all time. On the basis of the self-similar nonlinear MHD ordinary differential equations, we examine behaviours of the magnetosonic critical curves, the MHD shock conditions, and various asymptotic solutions. We then construct global semi-complete self-similar MHD solutions using a combination of analytical and numerical means and indicate plausible astrophysical applications of these magnetized flow solutions with or without MHD shocks.Comment: 21 pages, 7 figures, accepted for publication in APS

    A Conformally Invariant Holographic Two-Point Function on the Berger Sphere

    Full text link
    We apply our previous work on Green's functions for the four-dimensional quaternionic Taub-NUT manifold to obtain a scalar two-point function on the homogeneously squashed three-sphere (otherwise known as the Berger sphere), which lies at its conformal infinity. Using basic notions from conformal geometry and the theory of boundary value problems, in particular the Dirichlet-to-Robin operator, we establish that our two-point correlation function is conformally invariant and corresponds to a boundary operator of conformal dimension one. It is plausible that the methods we use could have more general applications in an AdS/CFT context.Comment: 1+49 pages, no figures. v2: Several typos correcte
    • 

    corecore