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Abstract

The problems arising when quantizing systems with periodic boundary conditions
are analysed, in an algebraic (group-) quantization scheme, and the “failure” of
the Ehrenfest theorem is clarified in terms of the already defined notion of good
(and bad) operators. The analysis of compactified Heisenberg-Weyl-type groups
according to this quantization scheme reveals the possibility for new quantum
(fractional) numbers extending those allowed for Chern classes in traditional
Geometric Quantization. This study is illustrated with the examples of the
free particle on the circumference and the charged particle in a homogeneous
magnetic field on the torus, both examples featuring “anomalous” operators,
non-equivalent quantization and the latter, fractional quantum numbers. These
provide the rationale behind flux quantization in superconducting rings and Frac-
tional Quantum Hall Effect, respectively.

1 Introduction

The need for a consistent quantization scheme which is truly suitable for systems wearing
a non-trivial topology is increasing daily. Configuration spaces with non-trivial topology
appear in as diverse cases as Gauge Theories, Quantum Gravity, and the more palpable
ones of the superconducting ring and the Quantum Hall effect, where the measuring tools
change the topology of the system in a non-trivial way.
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The most common problem which appears when the configuration-space manifold pos-
sesses a non-trivial topology is the failure of the Ehrenfest theorem for certain operators,
a problem usually referred to as an anomaly. In the sequel, we shall add the qualifier topo-
logic to distinguish these from others directly attached to the Lie algebra of the quantum
operators and characterized, roughly speaking, by the appearance of a term in a quantum
commutator not present at the classical, Poisson-algebra level. We call them algebraic
anomalies and refer the reader to [A-N-B-L] for a detailed analysis.

The failure of the Ehrenfest theorem for a given operator is primarily related to the
non-globality of the corresponding classical function, such as is the case of the local co-
ordinate on a one-dimensional closed submanifold. Geometric Quantization was intended
to go further than ordinary canonical quantization does, allowing for the quantization
of arbitrary symplectic manifolds. Unfortunately, Geometric Quantization only partially
accomplished this task, one of the reasons being the difficulty in (or, even more, the
impossibility of) finding a polarization suitable enough to quantize a given set of classical
functions [Wo, I-L], or quantizing a set of operators in a way that would preserve a given
polarization.

A quantization procedure based on a group structure, Group Approach to Quantiza-
tion (GAQ) [A-A, A-N-B-L], improves the standard Geometric Quantization approach in
that it provides two sets of mutually commuting operators, namely, the left- and right-
invariant vector fields. This enables us to impose the polarization conditions by means
of the left-invariant vector fields, say, while the right-invariant ones will be the quantum
operators, which automatically preserve the polarization. The quantization group G̃ is
endowed with a U(1)-principal bundle structure so that generators fall into two classes
according to whether or not they give rise to a term proportional to the vertical generator
on the r.h.s. of a commutator. Generators which do not reproduce any U(1)-term close a
horizontal subalgebra, the characteristic subalgebra, of non-dynamical generators, which
should be included in the polarization subalgebra. The principal drawback of GAQ is the
need for a group symmetry associated with the system to be quantized, and the apparent
restriction in the number of functions which can be quantized. However, this last limi-
tation is slighter than it might seem, since Canonical Quantization on a particular phase
space does not quantize the entire set of functions on phase space, but rather, a restricted
Poisson subalgebra. Even more, it could well happen in some cases that a more standard
quantization provides only quantum operators corresponding to a finite-dimensional Lie
algebra. This is the case, for instance, of the symplectic manifold S2, where the quantum
operators are only those of su(2) + R [G]. Moreover, most of the interesting systems in
Physics possess a symmetry group large enough to achieve a proper quantization.

To be more precise, not only the right invariant vector fields preserve the polarization,
but rather the entire right enveloping algebra preserve the structure of the Hilbert space.
This means that any element in the right enveloping algebra can be realized as a quantum
operator, although the relation between the quantum algebra and the standard Poisson
algebra on the co-adjoint orbits of the group is no longer an isomorphism; GQA provides
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a quantum theory rather than the quantization of a classical theory.
A reformulation of GAQ was proposed a few years ago [A-N-R], the Algebraic Quan-

tization on a Group (AQG) [some of the basic ideas in [A-N-R] have also appeared in the
context of quantum systems with non-trivial topology [L] and in Quantum Gravity ([A]
and references therein)] , which generalizes GAQ in two respects. Firstly, finite trans-
formations generalize the infinitesimal ones throughout the method; that is, any concept
or condition relative to Lie subalgebras is generalized by its counterpart in terms of Lie
subgroups, thus allowing discrete transformations to enter the theory. Needless to say,
infinitesimal objects are employed whenever possible. Secondly, it generalizes the U(1)
phase invariance in Quantum Mechanics (the structure group of the principal bundle fibra-
tion of the quantum symmetry) incorporating other symmetries, eventually interpreted
as constraints. The new structure group T , which must include the traditional U(1), may
also contain discrete symmetries especially suitable to simulate manifold surgery as, for
instance, toral compactification, by means of periodic boundary conditions.

The generalization of the U(1)-equivariance to T -equivariance condition on the wave
functions gives rise to two new, closely related features: a) the existence of non-equivalent
quantizations associated with non-equivalent representations of the larger structural sub-
group T , and b) the notion of good operators, constituting the subgroup of transforma-
tions compatible with the T -equivariance condition, in a sense to be specified later (see
[A-N-R]). Furthermore, those operators not preserving the T -equivariance condition, the
bad operators, may be seen as quantization-changing transformations, and exhibit topo-
logic anomalies. Like in the T = U(1) case, all the elements of the right enveloping
algebra compatible with the T -equivariance condition, for arbitrary T , can be realized as
good quantum operators.

It should be noted that, as mentioned above, AGQ is formulated in terms of finite
objects. This means that some algebraic indices must replace the well-know Chern class
[ω] of the symplectic form in Geometric Quantization. In fact, the indices characterizing
the (not necessarily central) extension by T of the “classical” group G generalize the
Chern class, providing also fractional values. This is precisely the case of the motion of
a charged particle on a torus in the presence of a homogeneous magnetic field, closely
related to the (Fractional) Quantum Hall Effect. The appearance of fractional quantum
numbers generalizing the integer Chern classes reveals, once again, that the procedure
of taking constraints and that of quantizing, depending at least on the specific methods
employed, may not commute.

This paper is organized as follows. Section 2 illustrates the way in which AQG operates
with the help of the examples of the Heisenberg-Weyl group in 1D with the coordinate x
compactified (Sec 2.1) and with both x and p compactified (Sec. 2.2). In the latter case,
corresponding to a compact phase space, a not necessarily integer quantization condition
is obtained which generalizes that of Geometric Quantization, i.e. the condition [ω] ∈ Z
(Chern class), and, associated with it, vector-valued wave functions. In solving this
problem, real (versus holomorphic) polarizations have been employed. This technique
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simplifies the treatment and is much more intuitive, even though the configuration-space
wave functions contain delta functions. The results obtained in Sec. 2 are applied to
the quantization of the free particle on the circumference (Sec. 3, where the failure of
Ehrenfest theorem is analysed), directly related to flux quantization in superconducting
rings, and to the quantization of a charged particle on a torus in the presence of an
homogeneous transverse magnetic field (Sec. 4), providing the rationale behind Integer
and Fractional Quantum Hall Effect.

2 Algebraic Quantization of the compactified Heisen-

berg -Weyl group: Fractional quantum numbers

In this section, we shall explain the AQG formalism over the example of the Heisenberg-
Weyl group with one co-ordinate compactified, and with one co-ordinate and its canoni-
cally conjugate momentum compactified. We nevertheless recommend the reading of the
Ref. [A-N-R]. Although explicit calculations are given for the Heisenberg-Weyl group
with only one co-ordinate-momentum pair, the results can be generalized, immediately,
to any finite number of them.

2.1 Cylindrical Heisenberg-Weyl group

Let us firstly proceed with the case of the Heisenberg-Weyl group with only one of the
coordinates compactified, i.e. with the cylinder as the symplectic manifold. The starting
point in AQG is a Lie group G̃ which is a right-principal bundle with structure group T .
T is itself a principal bundle with U(1) as structure group. In our case the base of G̃ is
the group manifold G of the ordinary Heisenberg group in 1D (throughout the paper, 1D
means one coordinate-momentum pair, so that G in this case is the plane, parameterized
by x and p), and T = U(1) × {ek, k ∈ Z}, where {ek, k ∈ Z} is the subgroup of G of
finite translations in the coordinate x by an amount of kL, L being the spatial period.
Note that T is isomorphic to U(1)× Z, so that its fibration is trivial.

The group law g′′ = g′ ∗ g for G̃ is:

x′′ = x′ + x

p′′ = p′ + p (1)

ζ ′′ = ζ ′ζe
i
h̄

[(1+λ)x′p+λxp′]

where the first two lines correspond to the group law of G, and the third to that of U(1).
The real parameter λ has been introduced to account for a complete class of central
extensions differing in a coboundary [coboundaries have the form ξ(g′, g) = η(g′ ∗ g) −
η(g′) − η(g), where η : G → R is called the generating function of the coboundary]

4



generated by the function η(x, p) = λxp (In particular, for λ = −1
2

we have Bargmann’s
cocycle).

From this group law we can read immediately the right and left translations, Rg′g =
g′ ∗g = Lgg

′. In particular, the left- and right-invariant vector fields (generating the finite
translations) become:

X̃L
x = ∂

∂x
+ λ

h̄
pΞ

X̃L
p = ∂

∂p
+ 1+λ

h̄
xΞ

X̃L
ζ = iζ ∂

∂ζ
≡ Ξ

X̃R
x = ∂

∂x
+ 1+λ

h̄
pΞ

X̃R
p = ∂

∂p
+ λ

h̄
xΞ

X̃R
ζ = iζ ∂

∂ζ
≡ Ξ

(2)

The quantization 1-form (the left-invariant 1-form associated with the parameter ζ) can
also be obtained:

Θ = λpdx − (1 + λ)xdp + h̄
dζ

iζ
(3)

Since we are not considering time evolution, the quantization 1-form has no charac-
teristic subalgebra, there exists no discrete characteristic subgroup GC , and any combi-
nation of the two generators X̃L

x and X̃L
p constitutes a first-order full polarization (with

the time evolution added, as in the free particle in 1D, things are a bit more compli-
cated, see Sec. 3). Two polarizations are singled out, Pp =< X̃L

x > and Px =< X̃L
p >,

or their finite (versus infinitesimal) counterparts GPp = {Space translations} and GPx =
{Boosts transformations}, leading to momentum and configuration space representations,
respectively. It should be borne in mind that the polarization conditions are needed to
reduce the group representation which otherwise would provide only the Bohr-Sommerfeld
quantization. These polarization conditions read X̃LΨ = 0, ∀X̃L ∈ P or Ψ(g∗GP) = Ψ(g)
in finite terms.

The T -function condition generalizes ordinary phase invariance (U(1)-equivariance) in
Quantum Mechanics, which is written Ψ(ζ ∗ g) = ρ(ζ)Ψ(g), where ρ(ζ) is the natural
representation of U(1) on the complex numbers, ρ(ζ) = ζ. The generalization to a
bigger group T involves the use of a general representation D of T (or, to be precise,
of TB ≡ U(1) ∪ Tp, where Tp is a maximal polarization subgroup of T ; see [A-N-R]) on
a complex vector space E, where the wave functions themselves take their values. In the
formalism of AQG, the representation of TB is constructed from the very representation
of G̃ , i.e. the vector space E on which the constrained functions are evaluated is made
out of the unconstrained wave functions by properly choosing their arguments. This is
the reason why the group TB is interpreted as constraints: the representation of TB is not
an abstract representation, but rather built with the same functions of the representation
of G̃ .

The TB-function condition then reads Ψ(gTB ∗ g) = D(gTB )Ψ(g), ∀gTB ∈ TB, ∀g ∈ G̃ .
In the present case TB = T and D(ζ, ek) = ζD(ek), where D(ek) is a representation of
{ek, k ∈ Z} (≈ Z) in the complex numbers, and there is an infinity of non-equivalent

irreducible representations, of the formDε(ek) = e
i
h̄
εkL, with ε ∈ [0, 2πh̄

L
) (the first Brillouin
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zone, in Solid State nomenclature). Therefore, there is a non-equivalent quantization
associated with each choice of non-equivalent representation of T , parameterized by ε.
The T -function condition for the wave function implies the restriction:

e
i
h̄

(1+λ)kLpΨε(x+ kL, p, ζ) = e
i
h̄
εkLΨε(x, p, ζ) (4)

Firstly, we shall consider the momentum space representation. The polarization con-
ditions (either in finite or infinitesimal form) in this case lead to the following form of the
wave functions:

Ψε(x, p, ζ) = ζe−
i
h̄
λxpΦε(p) (5)

where the fact that Ψ(ζg) = ζΨ(g) (by the T -function property) has been used.
Both conditions (4) and (5) together imply for the wave function Φε(p) a form like:

Φε(p) =
∑
k∈Z

αkφ
ε
k(p) (6)

where φεk(p) ≡ δ(p − ε − 2πh̄
L
k), i.e. the wave function is peaked at the values of the

momentum pεk = ε + 2πh̄
L
k, k ∈ Z. The Hilbert space Hε(G̃ ) is made from the wave

functions defined by (5) and (6).
The quantum operators, defined as P̂ ≡ −ih̄X̃R

x and X̂ ≡ ih̄X̃R
p , act on the wave

functions as:

P̂Ψε = pΨε

X̂Ψε = ζe−
i
h̄
λxp

[
ih̄
∂

∂p

]
Φε (7)

One of the main consequences of having generalized the structure group in AQG is
the classification of the operators (actually left translations) as good and bad operators
according to whether or not they are compatible with the T -function condition. More
precisely, the subgroup of good operators, GH, is characterized by the condition (see
[A-N-R])

Ad(G̃ ) [gT , GH] ⊂ GP , ∀gT ∈ T (8)

In the present case, and due to the discrete character of the “physical” momenta, the
position operator X̂ is expected to be problematic, since the subgroup of good transforma-
tions compatible with (4) and (5) is the subgroup of G̃ , in which the continuous variable
p is substituted by the discrete variable pk ≡ p0

k = 2πh̄
L
k, k ∈ Z, as can be deduced from

Ad(G̃ ) [en, g] = (0, 0, e
i
h̄
nLp) ⊂ GP ∀n ∈ Z. Therefore, the good operators are P̂ and the

finite boosts transformations by the amount of pk. Position is not a good operator in the
sense that it does not preserve the structure of the wave functions, i.e. it does not leave
the Hilbert space (for fixed ε) Hε(G̃ ) stable. This fact will be further discussed in Sec.
2.1.1.
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With regard to the configuration space representation given by the polarization Px or
the polarization subgroup GPx, the solutions to this polarization are:

Ψ(x, p, ζ) = ζe−
i
h̄

(1+λ)pxΦ(x) (9)

Applying the condition of T -function (4) to this wave functions in configuration space,
we obtain:

e
i
h̄

(1+λ)kLpe−
i
h̄

(1+λ)(x+kL)pΦε(x+ kL) = e
i
h̄
εkLe−

i
h̄

(1+λ)xpΦε(x) (10)

∀k ∈ Z, where the quasi-periodicity condition for Φε(x) immediately follows:

Φε(x+ L) = e
i
h̄
εLΦε(x) (11)

It should be stressed that this result is independent of the chosen cocycle, since it does
not depend on λ, as expected.

The quantum operators are:

P̂Ψε = ζe−
i
h̄

(1+λ)px [−ih̄∇] Φε

X̂Ψε = ζxΨε (12)

Again, the position operator X̂ is not a good operator, for the same reason as in the
momentum-space case, and the subgroup of (left) transformations leaving the structure
of the wave functions (9) and (11) stable is the same GH as before, containing only P̂ and
the finite boosts in pk, k ∈ Z. Therefore, the standard position has no meaning for any
(Galilean) system with the circumference as configuration space (see Sec. 3).

2.1.1 Is there any good position-like operator?

The position operator X̂ is not a good operator because the variable x is not periodic:
if φ(x) is a quasi-periodic function, xφ(x) is no longer quasi-periodic. However, the

function η = ei
2π
L
x is periodic, so that we could define the operator η̂ ≡ ei

2π
L

X̂, and verify
that η̂Ψε = ei

2π
L
xΨε satisfies the same quasi-periodicity condition as Ψε. We can then say

that η̂ is a good operator.
The reason why η̂ is a good operator is precisely that it generates a good finite boost.

We know that the only good boosts are indexed by pk = 2πh̄
L
k, i.e.

Ψε(pk ∗ g) = e
2πh̄
L
kX̃R

p Ψε(g) =
(
ei

2π
L

X̂
)−k

Ψε(g) = η̂−kΨε(g) (13)

This means that η̂k, k ∈ Z are the only good position operators.
The finite operator η̂ is obviously not Hermitian; rather, it is unitary as it should be.

However η̂ can be written as η̂ = cos(2π
L

X̂) + i sin(2π
L

X̂), the good operators cos(2π
L

X̂)

and sin(2π
L

X̂) being Hermitian. These are good operators, given that they are periodic
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functions of the operator X̂. Since the set of functions {ei
2π
L
mx, m ∈ Z} constitutes a

basis for the periodic functions of x in the interval [0, L], any operator which is a periodic
function of the position operator X̂ is a good operator.

In any case, we might wonder about the finite boosts transformations for p̃ 6= pk, i.e.
about transformations of the form Φ′(x) = e

i
h̄
p̃X̂Φε(x) = e

i
h̄
p̃xΦε(x). This new function

verifies the boundary conditions Φ′(x + L) = e
i
h̄
p̃(x+L)Φε(x + L) = e

i
h̄

(ε+p̃)LΦ′(x), and
therefore belongs to the Hilbert space Hε+p̃(G̃ ). In fact, since the representations param-
eterized by ε and ε+ 2πh̄

L
k, k ∈ Z are equivalent, the transformed wave functions lie in the

representation (ε+p̃) mod 2πh̄
L

. Of course, if p̃ = pk for some k, the transformed wave func-
tion lies in the same Hilbert space as before and we recover the result that the finite boosts
in pk are good operators. In particular, Φε(x) = e

i
h̄
εX̂Φ0(x) = e

i
h̄
εxΦ0(x) ≡ e

i
h̄
εxΦ(x), with

Φ(x) satisfying (the usual) periodic boundary conditions. This means that all the Hilbert
spaces Hε(G̃ ), although yielding non-equivalent representations, are related to each other
by means of finite boosts transformations, which are unitary transformations considered
in the union of all these Hilbert spaces ∪ε∈[0,2πh̄/L)Hε(G̃ ). We could say that Hε(G̃ ) for a
fixed ε is too small for the boosts operator to live in. The momentum operator, however,
preserves (and is Hermitian in) each one of these Hilbert spaces, but it is not Hermitian
in the union of all of them.

It is worth mentioning that the set of operators P̂, η̂ and η̂† close a Lie algebra
under ordinary commutation which is isomorphic to the non-extended harmonic oscillator
algebra. The operators η̂ and η̂† act as ladder operators on the eigenfunctions of P̂ (this
fact has been used in [O-K] to study Quantum Mechanics on the circumference).

2.2 Toral Heisenberg-Weyl group

Let us now proceed with the case of the Heisenberg-Weyl group with both the coordi-
nate and the momentum compactified, i.e. with the torus as symplectic manifold. We
shall parameterize the torus with coordinates (x1, x2) because in physical applications the
coordinates play the double rôle of coordinate and momentum (see Sec. 4.1).

We also apply AQG to this system. Here again, the base of G̃ is the group manifold
G of the Heisenberg group in 1D (the plane, now parameterized by ~x = (x1, x2)). If
L1 and L2 are the spatial periods in the x1 and x2 direction, respectively (thus defining

a rectangular torus), we introduce ~L~k ≡ (k1L1, k2L2), k1 and k2 being integers. The

structure group T will be a principal bundle with base
{
e~k,

~k ∈ Z × Z
}

and fiber U(1),

where
{
e~k,

~k ∈ Z × Z
}

is the set of finite translations in the coordinates ~x by an amount

of ~L~k. The fibration of T is non-trivial in principle.

The group law for G̃ now reads:

~x ′′ = ~x ′ + ~x

ζ ′′ = ζ ′ζe
i
h̄
mω[(1+λ)x′1x2+λx1x

′
2] (14)
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where a new numerical constant ω (with dimensions of T−1), besides the mass m, which
was implicit in the momentum p = mv, has been introduced to accommodate the dimen-
sions in the exponent above.

The left and right invariant vector fields can be obtained:

X̃L
x1

= ∂
∂x1

+ λ
h̄
mωx2 Ξ

X̃L
x2

= ∂
∂x2

+ 1+λ
h̄
mωx1 Ξ

X̃L
ζ = iζ ∂

∂ζ
≡ Ξ

X̃R
x1

= ∂
∂x1

+ 1+λ
h̄
mωx2 Ξ

X̃R
x2

= ∂
∂x2

+ λ
h̄
mωx1 Ξ

X̃R
ζ = iζ ∂

∂ζ
≡ Ξ ,

(15)

and the quantization 1-form is:

Θ = λmωx2dx1 − (1 + λ)mωx1dx2 + h̄
dζ

iζ
(16)

As before, the quantization 1-form has no characteristic module, and any combination of
the two generators X̃L

x1
and X̃L

x2
constitutes a first-order full polarization. These can be

written as P~n =< ~n·X̃L
~x >, where ~n = (n1, n2) is an arbitrary unit vector. The choice of an

~n corresponds to the selection of a particular direction in the plane. Locally, all directions
are indistinguishable, but globally (on the torus), there are geodesics (directions) which
close, as happens with the lines x2 = 0 and x1 = 0, and others which are open and fill the
torus densely. It can be easily checked that the condition for a geodesic with direction
given by ~n to close is either that n2

n1
= k02

k01

L2

L1
, k01, k02 ∈ Z or that ~n = (1, 0) or ~n = (0, 1),

i.e. ~n is of the form ~n = ~L~k0
/|~L~k0

|, with ~k0 ∈ Z × Z. Also, for a geodesic and its

orthogonal one to close, it is necessary and sufficient that
L2

2

L2
1

be a rational, except for the

case ~n = (1, 0) and ~n = (0, 1), which are always orthogonal and closed. This condition is
similar to the condition of commensurability of the frequencies for a Lissajoux figure to
be closed.

The polarization condition P~n leads to the following wave functions:

Ψ = ζe−
i
h̄
mω[(λn2

1−(1+λ)n2
2)y1y2+(λ+1

2
)n1n2y

2
1 ]Φ(y2) (17)

where y1 ≡ ~n · ~x , y2 ≡ ~n · Ĵ · ~x, and (Ĵ)ij = εij , with ε12 = 1. The action of the right
operators on these wave functions is:

~n · X̃R
~x Ψ =

i

h̄
mωy2Ψ

~n · Ĵ · X̃R
~x Ψ = ζe−

i
h̄
mω[(λn2

1−(1+λ)n2
2)y1y2+(λ+1

2
)n1n2y2

1 ] ×[
∂

∂y2
−
i

h̄
mωn1n2(1 + 2λ)y2

]
Φ(y2) (18)

Before imposing the constraints, we have to determine the structure of the group T .
It must be done by means of finite transformations, since it is basically a discrete group
(times U(1)). We then compute the group commutator of two elements of

{
e~k

}
~k∈Z×Z

,

with the result [e~k′ , e~k] = (0, 0, e
i
h̄
mωL1L2(k′1k2−k′2k1)). Two cases have to be considered:
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i) e
i
h̄
mωL1L2(k′1k2−k′2k1) = 1∀~k, ~k′ ∈ Z × Z ⇒ [e~k′ , e~k] = 1

G̃
,

ii) ∃~k and ~k′ / e
i
h̄
mωL1L2(k′1k2−k′2k1) 6= 1 ⇒ 1

G̃
6= [e~k′ , e~k] ∈ U(1) ,

For the case i), T is the direct product T =
{
e~k,

~k ∈ Z × Z
}
× U(1) and the whole

group T can be imposed as constraints. For the case ii), when e
i
h̄
mωL1L2(k′1k2−k′2k1) 6= 1

for some values of ~k and ~k′ (an infinite discrete set of values, in fact), there are two
possibilities, depending on whether mωL1L2

2πh̄
is rational or irrational. In neither case can

we impose the entire group T as a constraint group and we have to choose a polarization
subgroup Tp of T (see [A-N-R]).

2.2.1 Integer quantum numbers

For the condition i) to hold, it is necessary that

mωL1L2

2πh̄
= n ∈ N , (19)

which implies a quantization of the “frequency” ω. As we shall see in Sec. 4, this condition
will imply the quantization of the magnetic flux through the torus surface. This quanti-
zation condition is of the same nature as that of the Dirac monopole case. Concerning
this case, AQG simply reproduces the quantization condition of the standard Geometric
Quantization: the symplectic form must be of integer class, defining the Chern class of
the quantum manifold.

The rest of the procedure follows the same lines as in the case of the cylindrical H-W
group: the condition of T -function is Ψ(gT ∗ g) = D(gT )Ψ(g), with D(e~k, ζ) = ζD(e~k),

where D(e~k) is a representation of the group
{
e~k,

~k ∈ Z × Z
}
≈ Z × Z on the complex

numbers. For the moment, we shall use the trivial representation D0(e~k) = 1, and later

the rest of non-equivalent representations (leading to non-equivalent quantization of G̃ )
will be computed with the help of the bad operators, as was shown in Sec. 2.1.1 for the
cylindrical H-W group. The T -function condition then reads:

e
i
h̄
mω[(1+λ)k1L1x2+λk2L2x1]Ψ0(~x+ ~L~k, ζ) = Ψ0(~x, ζ) (20)

∀~k ∈ Z × Z. Applying this constraint to the polarized wave functions (17) the following
restriction is obtained:

e
i
h̄
mω{y2+(1+2λ)n1n2y1+[(1+λ)n2

2−λn
2
1](~n·Ĵ·~L~k)}(~n·~L~k)×

e−
i
h̄
mω[(1+2λ)n1n2(y1+y2)](~n·Ĵ·~L~k)Φ0(y2 + ~n · Ĵ · ~L~k) = Φ0(y2) (21)

∀~k ∈ Z × Z. This restriction has important consequences: a) the possible polarizations
are only those given by ~n = (1, 0) and ~n = (0, 1); b) the wave function is peaked at
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certain equally spaced values of y2; and c) the parameter λ is also quantized. From
these facts it can also be deduced that the dimension of the representation is n, i.e. the
representations of the Heisenberg-Weyl group on the torus, as is well known, are no longer
infinite-dimensional, having dimension n, where n is given by (19).

Explicitly, the “allowed” values for the coordinates are x2 = k
n
L2, k ∈ Z for ~n = (1, 0)

and x1 = k
n
L1, k ∈ Z for ~n = (0, 1). The wave functions then turn out to be, respectively:

Φ0(x2) =
∑
k∈Z

akδ(x2 −
k

n
L2) for ~n = (1, 0) (22)

Φ0(x1) =
∑
k∈Z

bkδ(x1 −
k

n
L1) for ~n = (0, 1) (23)

The coefficients ak and bk are not completely arbitrary; due to the T -function condition,
which now reads Φ0(x2 + k2L2) = Φ0(x2) (for ~n = (1, 0)) and Φ0(x1 + k1L1) = Φ0(x1)

(for ~n = (0, 1)) ∀~k ∈ Z × Z, they satisfy ak+n = ak, and bk+n = bk, ∀k ∈ Z. Then, there
are only n independent coefficients, so that the dimension of the representation is n. The
allowed values for λ are given by λ = k

n
, k ∈ Z, i.e. the possible (equivalent) cocycles, or

that which is the same, the possible coboundaries are quantized. This fact can be easily
understood in terms of the generating function of the coboundary parameterized by λ,
which has the form λx1x2, or better, e

i
h̄
mωλx1x2. For this function to be quasi-periodic,

i.e. e
i
h̄
mωλ(x1+k1L1)(x2+k2L2) = eiε·~L~ke

i
h̄
mωλx1x2, ∀~k ∈ Z × Z, the quantization condition for

λ is necessary, besides the quantization condition for x1 and x2.
Let us focus on the case ~n = (1, 0) for concreteness (the case ~n = (0, 1) is completely

analogous and in fact equivalent). Using the expression (22) and the fact that ak+n =
ak, ∀k ∈ Z, the summatory can be regrouped, and we arrive at a rather compact form for
the wave functions:

Φ0(x2) =
∑
k∈Z

akδ(x2 −
k

n
L2) =

n−1∑
k=0

∑
k2∈Z

ak+nk2δ(x2−
k + nk2

n
L2)

=
n−1∑
k=0

ak
∑
k2∈Z

δ(x2 −
k + nk2

n
L2)

=
n−1∑
k=0

akΛ
0
k(x2) (24)

where (x
(k)
2 ≡ x2 −

k
n
L2)

Λ0
k(x2) ≡

∑
k2∈Z

δ(x(k)
2 − k2L2) =

1

L2

∑
q∈Z

ei2πqx
(k)
2 /L2 (25)

Therefore, the dimension of the Hilbert space H0(G̃ ) is n, since it is spanned by the
functions Λ0

k(x2), k = 0, 1, ..., n− 1.

11



Next, we determine the subgroup GH of good transformations (those preserving the
structure of the wave function). As in the case of the cylindrical H-W group, it is de-

duced from Ad(G̃ )
[
e~k′, g

]
=
(
0, 0, e

i
h̄
mω(k1L1x2−k2L2x1)

)
⊂ GP ∀~k ∈ Z × Z, which implies

mω
h̄

(k1L1x2 − k2L2x1) = 2πk, k ∈ Z, and, together with the quantization condition (19)

for ω, leads to ~x = 1
n
~L~k. Therefore, the subgroup GH of good transformations is the sub-

group of G̃ in which the parameters ~x are restricted to be ~x = 1
n
~L~k, although only a finite

number of them corresponding to {~x = (k1

n
L1,

k2

n
L2), k1, k2 = 0, 1, ..., n− 1} are actually

different, due to the T -function condition. Consequently, no infinitesimal transformation
(apart from that of U(1)) preserves the structure of the wave function.

If we introduce the (finite) operators η̂i ≡ eLiX̃
R
xi , i = 1, 2, in a similar way as in Sec.

2.1.1 (although here they represent finite translations), we can write the elements of T as
e~k ≡ (η̂1)k1(η̂2)k2, and the subgroup of good operators is:

GH =
{
ζ(η̂1)

k1
n (η̂2)

k2
n , k1, k2 ∈ Z, ζ ∈ U(1)

}
(26)

As in Sec. 2.1.1, the set of bad operators can be interpreted as quantization-changing
operators, sweeping the space of all non-equivalent quantizations. As was proven there, the
action of a bad operator takes the wave function out of our Hilbert spaceH0(G̃ ) and puts
it into a different Hilbert space H~α(G̃ ) corresponding to a non-equivalent representation
of TB (= T ) parameterized by ~α. Thus, we define the new functions (we restrict ourselves
to the Φ(x2) part of the wave function):

Φ~α(x2) ≡ eα1X̃R
x1

+α2X̃R
x2 Φ0(x2) = ei2πn

x2
L2

α1
L1 Φ0(x2 + α2)

=
n−1∑
k=0

ake
i2πn

x2
L2

α1
L1 Λ0

k(x2 + α2) =
n−1∑
k=0

akΛ
~α
k (x2) (27)

where

Λ~α
k (x2) ≡ ei2πn

x2
L2

α1
L1 Λ0

k(x2 + α2) = ei2πn
x2
L2

α1
L1

1

L2

∑
q∈Z

ei2πq(x
(k)
2 +α2)/L2 (28)

and the values of ~α are different from 1
n
~L~k (good transformations).

To determine the non-equivalent quantizations (i.e. the minimum range of values of
the parameters α1 and α2 that sweeps the whole set of non-equivalent quantizations)
we let the transformations of T act on these new functions and then we determine the
quasi-periodicity conditions:

(η̂1)k1Φ~α(x2) = e−i2πn
α2
L2
k1Φ~α(x2) (29)

(η̂2)k2Φ~α(x2) = ei2πn
α1
L1
k2Φ~α(x2) (30)

from which it can be deduced that α1 ∈ [0, L1

n
) and α2 ∈ [0, L2

n
). This range of values

is associated with the first Brillouin zone of the reciprocal lattice, as can be checked

12



if we define the parameters ~ε ≡ mωĴ · ~α. It is easy to verify that the wave functions
{Λ~α

k(x2), k = 0, 1, ..., n − 1} constitute the carrier space (they span H~α(G̃ )) for unitary
irreducible representations (parameterized by ~α) of the subgroup of good operators. Under
these operators the wave functions transform as:

(η̂1)k1/nΛ~α
k(x2) = ei2π( k

n
−
α2
L2

)k1Λ~α
k (x2) (31)

(η̂2)k2/nΛ~α
k(x2) = ei2π

α1
L1
k2Λ~α

k−k2 modn(x2) (32)

Summarizing the integer case, there is a continuum of non-equivalent quantizations,
corresponding to non-equivalent representations of T parameterized by ~α, giving rise to
different quasi-periodic boundary conditions. The value ~α = 0, corresponding to the
trivial representation D0(e~k) = 1 of

{
e~k;

~k ∈ Z × Z
}
, reproduces the standard periodic

boundary conditions. The wave functions are (27-28) with quasi-periodicity conditions
given by (29-30) and the subgroup of good operators is (26).

A brief comment is now in order. Let us consider the discrete (infinite) subgroup

generated by
{

(η̂1)
k1
n (η̂2)

k2
n , k1, k2 ∈ Z

}
, which constitutes a principal fibre bundle with

base Z × Z and fibre Zn ⊂ U(1). The group algebra of this discrete group can be proven
to be (in a suitable basis) an infinite-dimensional trigonometric algebra [F]. Since n is
an integer, this discrete group has a centre, which can be removed by means of the T -

function condition. The quotient group is the finite group generated by
{

(η̂1)
k1
n (η̂2)

k2
n ,

k1, k2 = 0, ..., n− 1}. This finite group (which can be seen as a finite version of the
Heisenberg-Weyl group) constitutes a principal fibre bundle with base Zn × Zn and fibre
Zn ⊂ U(1), and admits a simple matrix representation given in Ref. [W] (see also [F]
and [Fl]). The corresponding group algebra is the algebra of SU(n) × U(1) for n odd
or U(n/2) for n even, in a trigonometric basis [F]. By means of this representation,
the limit n → ∞ (the “classical” limit) is particularly simple, leading to the algebra of
infinitesimal area-preserving diffeomorphisms of a 2D-surface (the torus, in this case).
This algebra, referred to as ω∞ in the literature, is the classical version of a variety of
infinite-dimensional algebras called collectively W∞, of increasing interest nowadays (see
[S] for a review). In this sense, the subgroup of good operators GH can be seen as the
quantum version of the area-preserving diffeomorphisms of the torus, thus constituting a
realization of the W∞ algebras on the torus.

2.2.2 Fractional quantum numbers

We now consider the rational case, in which mωL1L2

2πh̄
= n

r
. In this case T has a non-trivial

characteristic subgroup, i.e. there are non-trivial elements commuting with the whole
group T . This is GC = {r~L~k,

~k ∈ Z2}, and the polarization subgroup, which must contain

GC , is Tp = GC ∪ {k~L~kp , k ∈ Z}, where ~kp is a vector the components of which are either

13



relative prime integers, (1,0) or (0,1). This condition is required for maximality of the
polarization subgroup, and therefore for the irreducibility of the representation of T .

The T -function condition now reads Ψ(gTB ∗g) = D(gTB )Ψ(g), where TB ≡ Tp∪U(1) is
the maximal subgroup of compatible constraints that can be applied to the wave function,
and D(gTB ) is a representation of TB on the complex numbers. For the moment, we shall
use the representation D0(eTp, ζ) = ζ, which is trivial for the elements in Tp. Later, the
non-equivalent representations of TB will be straightforwardly computed, as in Sec 2.2.1.
The TB-function condition on the polarized wave functions (17) is then:

e
i
h̄
mω

{
y2+(1+2λ)n1n2y1+[(1+λ)n2

2−λn
2
1](~n·Ĵ·~L

r~k+k~kp
)

}
(~n·~L

r~k+k~kp
)
×

e−
i
h̄
mω[(1+2λ)n1n2(y1+y2)](~n·Ĵ·~L

r~k+k~kp
)
Φ0(y2 + ~n · Ĵ · (~Lr~k+k~kp

)) = Φ0(y2) (33)

∀k ∈ Z, and ∀~k ∈ Z×Z. As in the integer case, the only polarization vectors ~n consistent
with these restrictions are ~n = (1, 0) and ~n = (0, 1), and the same for ~kp, for which the

only possible values are ~kp = (1, 0) and ~kp = (0, 1).
Let us fix the polarization to ~n = (1, 0) for concreteness (the case ~n = (0, 1) is

completely analogous and in fact leads to an equivalent representation). The two different

choices of ~kp, perpendicular and parallel to ~n, lead to non-equivalent representations [this
is a general feature in AQG: for a given polarization in G̃ , different choices of polarization
subgroups Tp in T can lead to non-equivalent quantizations, even though the polarization
subgroups were equivalent from the point of view of the subgroup T itself (see [A-N-R])],
both with dimension n and with λ restricted to be λ = k/n, k ∈ Z:

a) ~L~kp ⊥ ~n i.e. ~kp = (0, 1), then the wave function is peaked at the values y2 = x2 =
k
n
L2, k ∈ Z, satisfies Φ0

⊥(x2 + k2L2) = Φ0
⊥(x2), and has the form

Φ0
⊥(x2) =

n−1∑
k=0

akΛ
0
k(x2) (34)

where Λ0
k(x2) is defined as in Sec 2.2.1, and the subgroup of good transfor-

mations is GH = { r
n
~L~k,

~k ∈ Z × Z} ∪ { k
n
L2, k ∈ Z}, although only a finite

subgroup of them are distinct:

G⊥H =
{

(η̂1)r
k1
n , (η̂2)

k2
n , k1, k2 = 0, ..., n− 1

}
(35)

b) ~L~kp ‖ ~n i.e. ~kp = (1, 0), then the wave function is peaked at the values y2 = x2 =

k r
n
L2, k = 0, 1, ...n− 1, satisfies Φ0

‖(x2 + rk2L2) = Φ0
‖(x2), and has the form

Φ0
‖(x2) =

n−1∑
k=0

akΛ
r,0
k (x2) (36)
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where Λr,0
k (x2) ≡

1
rL2

∑
q∈Z ei2πqx

r,(k)
2 /(rL2), with x

r,(k)
2 ≡ x2 −

k
n
rL2, and the

subgroup of good transformations is GH = { r
n
~L~k,

~k ∈ Z ×Z}∪ { k
n
L1, k ∈ Z}.

Again, only a finite subgroup of them are distinct:

G
‖
H =

{
(η̂1)

k1
n , (η̂2)

r
k2
n , k1, k2 = 0, ..., n− 1

}
(37)

As in Sec. 2.1.1, we can compute the non-equivalent representations by applying the
whole set of bad operators to the wave functions. We proceed as in the integer case (Sec
2.2.1) and obtain:

a) ~L~kp ⊥ ~n the wave functions have the form

Φ
~αp
⊥ (x2) =

n−1∑
k=0

akΛ
~αp
k (x2) (38)

with Λ
~αp
k (x2) ≡ ei2π

n
r

αp1
L1

x2
L2 Λ0

k(x2). They satisfy

(η̂1)rk1Φ
~αp
⊥ (x2) = e−i2πn

αp2
L2

k1Φ
~αp
⊥ (x2) (39)

(η̂2)k2Φ
~αp
⊥ (x2) = ei2πn

αp1
rL1

k2Φ
~αp
⊥ (x2) (40)

with αp1 ∈ [0, rL1

n
), αp2 ∈ [0, L2

n
).

b) ~L~kp ‖ ~n the wave functions have the form

Φ
~βp
‖ (x2) =

n−1∑
k=0

akΛ
r,~βp
k (x2) (41)

with Λ
r,~βp
k (x2) ≡ ei2π

n
r

βp1
L1

x2
L2 Λr,0

k (x2). They satisfy

(η̂1)
k1Φ

~βp
‖ (x2) = e−i2πn

βp2
rL2

k1Φ
~αp
‖ (x2) (42)

(η̂2)
rk2Φ

~βp
‖ (x2) = ei2πn

βp1
L1

k2Φ
~βp
‖ (x2) (43)

with βp1 ∈ [0, L1

n
), βp2 ∈ [0, rL2

n
).

It is easy to verify that the wave functions {Λ~αp
k (x2), k = 0, 1, ..., n−1} and {Λr,~βp

k (x2), k =
0, 1, ..., n−1} constitute the carrier spaces for unitary irreducible representations (parame-

terized by ~α and ~β, respectively) of the subgroup of good operators. Under these operators
they transform as:
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a) ~L~kp ⊥ ~n

(η̂1)rk1/nΛ
~αp
k (x2) = ei2π( k

n
−
αp2
L2

)
Λ
~αp
k (x2) (44)

(η̂2)k2/nΛ
~αp
k (x2) = ei2π

α1
rL1

k2Λ
~αp
k−k2 modn(x2) (45)

b) ~L~kp ‖ ~n

(η̂1)k1/nΛ
r,~βp
k (x2) = ei2π( k

n
−
βp2
rL2

)Λ
r,~βp
k (x2) (46)

(η̂2)rk2/nΛ
r,~βp
k (x2) = ei2π

βp1
L1

k2Λ
r,~βp
k−k2 modn(x2) (47)

It should be noted that although mωL1L2

2πh̄
= n

r
, the dimension of the representations

is n, and λ = k/n, k ∈ Z, as in the integer case (even more, in the case ~L~kp ⊥ ~n

the wave functions coincide); the difference is found in the subgroups of good operators,
which, although isomorphic, differ in the specific values of the transformations. This
representation can be reinterpreted as considering a torus r times greater in one direction
(determined by the orthogonal vector to ~kp), i.e., the area of the effective torus is rL1L2,

and therefore mω(rL1L2)
2πh̄

= n. Thus, the same results as in the integer case now apply,

although changing L2 by rL2 if ~kp = (1, 0) or L1 by rL1 if ~kp = (0, 1).
Summarizing the fractional case, there are two continua of non-equivalent quanti-

zations, according to the choices ~L~kp ⊥ ~n and ~L~kp ‖ ~n, parameterized by ~αp and ~βp,

respectively. The wave functions are given by (38) and (41), satisfying quasi-periodicity
conditions given by (39-40) and (42-43), respectively. The subgroups of good operators
are given by (35) and (37), respectively.
Associated r-vector bundle: If we act on the wave functions with the bad operators of T
(i.e. those operators of T which are not in TB) the resulting wave functions lie in a different
Hilbert space belonging to a different quantization. However, as these operators are finite
and their rth power are good operators, these new wave functions transform among each
other under the action of the subgroup Tbad, defined as the set of bad operators of T
and the identity. Therefore, constructing the vector space spanned by these r functions
(Tbad has r elements), we obtain an r-dimensional, unitary irreducible representation of
the group T as a whole, including the bad operators. Explicitly:

a) ~L~kp ⊥ ~n we define

Λ
~αp
k,j(x2) ≡ (η̂1)jΛ

~αp
k (x2) = ei2π

n
r

x2
L2
j
Λ
~αp
k (x2) (48)

for j = 0, 1, ..., r − 1, where they satisfy:

(η̂1)j
′
Λ
~αp
k,j(x2) = e−i2πn

αp2
L2

(j+j′ div r)
Λ
~αp
k,j+j′ mod r(x2) (49)

for j, j′ = 0, 1, ..., r− 1.
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b) ~L~kp ‖ ~n we define

Λ
r,~αp
k,j (x2) ≡ (η̂2)jΛ

r,~αp
k (x2) = Λ

r,~αp
k (x2 + jL2) (50)

for j = 0, 1, ..., r − 1, satisfying:

(η̂2)
j′Λ

r,~αp
k,j (x2) = ei2πn

αp1
L1

(j+j′ div r)
Λ
r,~αp
k,j+j′mod r(x2) (51)

for j, j′ = 0, 1, ..., r− 1.

This construction can be viewed as the r-dimensional vector bundle associated with
the principal bundle G̃ , which has structure group T . The r-component wave functions
are sections of this associated vector bundle.

As stated before, AQG generalizes Geometric Quantization in some respects, in partic-
ular in that which concerns (topologic) quantum numbers. The fractional value mωL1L2

2πh̄
=

n
r

generalizes the integer class of the standard symplectic form (the Chern class of the line
bundle). The geometric quantization of a symplectic manifold with “fractional class” n

r

would have led to r-valued wave functions (as opposed to single-valued). Eventually, this
trouble could have been circumvented by replacing the usual line bundle by a complex
vector bundle E of rank r and Chern class n, as constructed before. Then the fractional
value n

r
would be the Chern class of the determinant bundle associated with E [V].

2.2.3 Irrational case

Finally, and for the sake of thoroughness, let us briefly comment on the case in which
ρ ≡ mωL1L2

2πh̄
is an irrational number. In this case the characteristic group is trivial,

and TB = Tp ∪ U(1), with Tp = {k~L~kp , k ∈ Z} only. As before, it can be proven that

the only possible polarization vectors are ~n = (1, 0) and ~n = (0, 1). Moreover, the

only consistent choice of polarizations Tp in T are also ~kp = (1, 0) and ~kp = (0, 1). No
restriction for λ appears in this case, and the structure of TB-function condition closely
resembles that of the case of the cylindrical H-W group: the wave functions are either
peaked at an infinite series of equally spaced values of y2 if ~kp ‖ ~n (as in the momentum

space representation in the cylindrical H-W group), or quasi-periodic if ~kp ⊥ ~n (as in the
configuration space representation in the cylindrical H-W group). In both cases the non-
equivalent representations are labelled by ε ∈ [0, 2πh̄

|~L~kp
|
). The representations are therefore

infinite dimensional, and the subgroup of good operators is given by GH = {1
ρ
~L~k,

~k ∈

Z × Z} ∪ {α~L~kp , α ∈ R}. Consequently, besides the discrete transformations in ~x = 1
ρ
~L~k,

the infinitesimal operator ~L~kp · X̃
R
~x is also a good operator, that is, arbitrary translations

in the direction of ~L~kp are good transformations. Note that, ρ being an irrational number,
1
ρ
~L~k never reaches a point of the lattice, although it fills the torus densely when varying

~k ∈ Z × Z.

17



Therefore, in this case, a circumference (x1 = 0 or x2 = 0), as a group, is represented
faithfully, as in the case of the cylindrical H-W group, but the rest of the torus is not
faithfully represented, nor are even the points of the lattice. In particular, for the infinite-
order operators η̂1, η̂2, defined as in Sec 2.1.1 for the directions x1, x2, only one is a good
operator (the one in the direction of ~L~kp), the other being a bad operator. Consequently,
we cannot represent the toroidal H-W group faithfully for irrational values of ρ.

3 Free Galilean particle on the circumference

Let us apply the results obtained in the last section to the simple example of the free
particle moving on the circumference.

We can study this problem easily by simply adding the temporal evolution to the
results obtained in Sec. 2.1 (for the group law, vector fields, polarizations, Schrödinger
equation, etc., see [A-B-G-N] and references therein), without affecting the main conclu-
sions of that section. The main new features are the introduction of a new operator Ê
associated with the temporal evolution and the fact that, by using the Schrödinger equa-
tion, this operator can be written in terms of the momentum operator as 1

2m
P̂2. Since P̂

is a good operator, Ê proves also to be a good operator. A common set of eigenfunctions
is given by

φεn(x, t) = e−
i
h̄

1
2m

(ε+2πh̄
L
n)2te

i
h̄

(ε+2πh̄
L
n)x

Êφεn =
1

2m
(ε+

2πh̄

L
n)2φεn (52)

P̂φεn = (ε+
2πh̄

L
n)φεn

where n ∈ Z. Note that for ε = 0 the states n and −n have the same energy, which
means that all the energy eigenstates except for the vacuum are degenerate. For any
other value of ε, the states n and −(n + 2ε L

2πh̄
) have the same energy, but −(n + 2ε L

2πh̄
)

is an eigenstate only if 2ε L
2πh̄
∈ Z, i.e. ε L

2πh̄
is integer or half-integer. This means that, in

general, there is no degeneracy for any value of ε except for the integer values, in which
case all the eigenstates are doubly degenerate except for the vacuum, and half-integers, for
which all the eigenstates, including the vacuum, are doubly degenerate. The phenomenon
of degenerate ground state in this simple model parallels θ-vacuum phenomenon in Yang-
Mills field theories [As].

The feature of non-equivalent quantizations can be reproduced (in an equivalent way,
indeed) by the introduction of an extra coboundary in (1) (more precisely, in its counter-
part when the temporal evolution is added; see [A-B-G-N]) generated by the function εx,

i.e. a multiplicative factor of the form e
i
h̄
εp
′

m
t in the ζ ∈ U(1) composition law [We remind

that x′′ = x′+x+ p′

m
t is the composition law for x when the temporal evolution is added].

In the case of the free Galilean particle on the real line, the only consequence of this
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term is the appearance of a total derivative in the quantization 1-form Θ (or, what is the
same, in the Lagrangian), leading thus to equivalent (classical and quantum) theories, as
expected from the fact that ε p

′

m
t is a coboundary. The situation is quite different when the

particle is on the circumference: the generating function εx, or better e
i
h̄
εx, is not single-

valuate on the circumference unless ε = 2πh̄
L
k, k ∈ Z. As a consequence, two cocycles

differing in a coboundary generated by εx (and therefore leading to equivalent theories
on the real line) lead to non-equivalent theories on the circumference if ε 6= 2πh̄

L
k, k ∈ Z.

This process of creation of non-trivial cohomology closely resembles the appearance of
cohomology under the process of group contraction, as in the case of the Poincaré group,
in which a certain class of coboundaries (generated by a linear function in time) become
true cocycles in the c → ∞ limit since their generating function goes to infinity in this
limit.

Another interesting way of interpreting the feature of non-equivalent quantizations
parameterized by ε, at least in the case of charged particles, is as an Aharonov-Bohm-like
effect. The different quantizations can be carried out physically by producing (externally,
with the help of a solenoid) a magnetic flux Φ through the circumference, in a way that the
particle does not feel the magnetic field, but rather the vector potential only. Under these
circumstances, the effect of the vector potential is the same as that of a boost, leading
to non-equivalent quantizations depending on the flux through the circumference, in such
a way that ε = eΦ/c. An interesting physical application is that of a superconducting
ring threaded by a magnetic flux, where by Meissner effect the magnetic flux is pulled
out of the interior region of the superconducting ring, and therefore the magnetic field is
effectively zero and only the vector potential is relevant (Aharonov-Bohm effect). If the
flux is [in this case the effective electric charge is e∗ = 2e because electrons form Cooper
pairs] kΦ0, k ∈ Z, where Φ0 ≡ hc/e∗ is the quantum unit of flux, there is no net current
in the superconducting ring, but for any other value of the flux there is a net current
which has the form given in Figure 1.

Note that for half-integer values of k, the net current has no definite sign, as a con-
sequence, precisely, of the double degeneracy of states, in such a way that states with
opposite signs of velocity have the same energy and therefore there is no energy cost to
pass from one to the other.

3.1 Failure of the Ehrenfest theorem

As mentioned in the introduction, the most common problem appearing in systems with
topologically non-trivial configuration space is the failure of Ehrenfest theorem for certain
operators (“anomalous” operators) [E]. Ehrenfest theorem asserts that the expectation
values of quantum operators follow classical equations of motion:

d

dt
< Â >=

i

h̄
<
[
Ĥ, Â

]
> (53)
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In the framework of AQG, this is a natural consequence of the appearance of bad op-
erators, those which do not preserve the Hilbert space of wave functions that verify the
T -function condition.

In Ref. [E] it is claimed that when the operator Â does not keep invariant the domain
of Ĥ, then an extra term appears in the r.h.s. of (53), which is interpreted as an anomaly.
In the language of AQG, we would say that Â is a bad operator, so that neither the left-
hand side nor the right-hand side of (53) would make sense, since the operator Â takes
the wave function off the Hilbert space where the Hamiltonian Ĥ is self-adjoint (of course
Ĥ is a good operator; otherwise the temporal evolution would take the physical states off
the Hilbert space, and the system would have no physical meaning). The appearance of
the “anomalous” term violating the Ehrenfest theorem is a consequence of this fact.

Returning to the free Galilean particle on the circumference, the Ehrenfest theorem
will fail for the position operator, which is a bad operator and therefore Eq. (53) makes
no sense in this regard.

In conclusion, whenever there are bad operators in the theory, the Ehrenfest theorem
will fail for each of these operators and, in general, any expectation value involving these
operators will be ill-defined, giving extra terms that can eventually be interpreted as
topologic anomalies.

4 Charged particle in a homogeneous magnetic field

on the torus

Now, we shall consider the most interesting problem of a charged particle moving on
a torus in the presence of a homogeneous magnetic field. This problem is related to
the Schwinger model [M], and has important applications in the Quantum Hall effect
[K-D-P, La, T]. The magnetic field is perpendicular to the torus surface, and the total
flux is quantized (as we shall see), much in the same manner the Dirac monopole charge
is quantized [W-Y]. The actual connection of this system with Quantum Hall Effect is
based on the fact that the wave function of the complete system factorizes in a relative-
coordinate dependent term (which includes interactions) and a centre of mass dependent
term, which behaves essentially as a particle in a transverse homogeneous magnetic field,
and on the effective topology of the experimental device in the latter system; the topology
of the (semiconductor) strip along with the current and voltage leads is that of a punctured
torus [T].

Firstly, we shall study the planar case, i.e. the charged particle on the plane, to clarify
the meaning of the different magnitudes appearing in the problem, and to obtain a proper
parameterization of the system.
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4.1 Charged particle in a homogeneous magnetic field

The movement of a charged particle in a homogeneous magnetic field can be factorized into
a 2-dimensional problem (on the plane normal to the magnetic field) times a free movement
in the direction of the magnetic field. Thus, we restrict ourselves to a 2-dimensional system
characterized by a non-zero commutator between the translation generators, [X̃L

x1, X̃L
x2] =

imωc/h̄, where ωc is the cyclotron frequency, ωc = qH
mc

, H the magnetic field strength and
q the particle electric charge [L-L, C-D-L].

We have to build up a group law for this system, which must be a deformation of
the Galilean group law (in two dimensions) due to the non-zero commutator between the
translation generators. In fact, the Galilean group does not admit any central extension
giving rise to [X̃L

x1, X̃L
x2] = imωc/h̄, and a deformation of the non-extended algebra is

required:
[
XL
t , X

L
~x

]
= ωcĴ · XL

~x . We then arrive at the following Lie algebra as the
quantum symmetry for our system:[

X̃L
t , X̃

L
~x

]
= ωcĴ · X̃

L
~x[

X̃L
t , X̃

L
~p

]
= −

1

m
X̃L
~x (54)[

X̃L
xi , X̃

L
pj

]
=

δij

h̄
Ξ[

X̃L
xi , X̃

L
xj

]
=

mωc

h̄
εijΞ

A group law for this centrally extended Lie algebra becomes:

t′′ = t′ + t

~x ′′ = ~x+ M̂−1(t) · ~x ′ +
1

mωc

(
N̂−1(t) + Ĵ

)
· ~p ′

~p ′′ = ~p ′ + ~p (55)

ζ ′′ = ζ ′ζe
i
h̄
ξ(g′,g)

where the cocycle is given by:

ξ(g′, g) =
1

2

{
mωc~x

′ · N̂(t) · ~x− ~p ′ · M̂(t) · ~x+ ~x ′ · M̂(t) · ~p+
1

mωc
~p ′ ·

(
N̂(t)− Ĵ

)
· ~p
}
(56)

The 2 × 2 matrices are given by M̂(t) ≡ cosωct Î − sinωct Ĵ , N̂(t) ≡ sinωct Î + cosωct Ĵ,
M̂(t) and N̂(t) being orthogonal, and Ĵij ≡ εij, ε12 = 1. We have not taken into account
the rotations, since they do not play any dynamical rôle, although they are of interest
in that, when considered on the torus, they represent a very simple example of a local
(in the strict mathematical sense) symmetry of the equation of motion which cannot be
realized globally.
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The left and right invariants vector fields are easily deduced from the group law:

X̃L
t =

∂

∂t
+
~p

m
·
∂

∂~x
− ωc~x · Ĵ ·

∂

∂~x

X̃L
~x =

∂

∂~x
−

1

2h̄

[
~p +mωcĴ · ~x

]
Ξ (57)

X̃L
~p =

∂

∂~p
+

~x

2h̄
Ξ

X̃L
ζ = iζ

∂

∂ζ
≡ Ξ

X̃R
t =

∂

∂t

X̃R
~x = M̂(t) ·

∂

∂~x
+

1

2h̄

[
M̂(t) · ~p +mωcN̂(t) · ~x

]
Ξ (58)

X̃R
~p =

∂

∂~p
+

1

mωc

(
N̂(t)− Ĵ

)
·
∂

∂~x
−

1

2h̄

[
M̂(t) · ~x−

1

mωc

(
N̂(t)− Ĵ

)
· ~p
]

Ξ

X̃R
ζ = iζ

∂

∂ζ
≡ Ξ

and from (57) the quantization 1-form is computed:

Θ =
1

2

[
~p · d~x− ~x · d~p−mωc~x · Ĵ · d~x

]
−

[
p2

2m
+ ωc~p · Ĵ · ~x+

mω2
c

2
~x2

]
dt+ h̄

dζ

iζ
(59)

the characteristic module of which is GΘ =< X̃L
t >. From this, the classical equations of

motion are written:

~p = ~P

~x = M̂−1(t) · ~r0 +
1

mωc
Ĵ · ~P (60)

where ~P and ~r0 are arbitrary constant vectors, parameterizing the (classical) solution

manifold. With the aid of the constant ωc, we may introduce ~R ≡ 1
mωc

Ĵ · ~P , so that the

second line of the equation above reads ~x = M̂−1(t) · ~r0 + ~R, i.e. the classical trajectories

are circumferences centred at ~R, with radius |~r0|.
The Noether invariants, in terms of the constants ~r0 and ~R, are:

iX̃R
t

Θ =
mω2

c

2
~r0

2 ≡ H

iX̃R
~x

Θ = mωcĴ · ~r0 (61)

iX̃R
~p

Θ = −(~r0 + ~R) ≡ ~x0
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where H is the classical energy of the system. It should be noted that the energy depends
only on the radius |~r0| of the circumference, and not on the position ~R of its centre, as
corresponds to a system with translational invariance [The system possesses translational
invariance in the more conventional sense (the magnetic field is homogeneous) although
the translation generator X̃R

~x does not commute with the Hamiltonian X̃R
t . In fact, as

we shall see later, there exists a translation generator in the Lie algebra (the magnetic
translations) which commutes with the Hamiltonian generator].

To obtain the representation in configuration space, we need to impose polarization
conditions similar to those of the Galilean case [A-B-G-N]:

PHO =< X̃L
~p , X̃

L
t −

ih̄

2m

(
X̃L
~x

)2
> (62)

Solving the polarization equations we obtain for the wave functions the general form:

Ψ = ζe−
i

2h̄
~x·~pΦ(~x, t) (63)

where Φ(~x, t) satisfies the Schrödinger equation

ih̄
∂

∂t
Φ =

{
−
h̄2

2m
~∇2 + ih̄

ωc

2
~x · Ĵ · ~∇+

mω2
c

8
~x2

}
Φ (64)

The quantum operators are:

ÊΨ = ih̄
∂

∂t
Ψ = ζe−

i
2h̄
~p·~x

[
−
h̄2

2m
~∇2 + ih̄

ωc
2
~x · Ĵ · ~∇+

mω2
c

8
~x2

]
Φ(~x, t)

~̂PΨ = ζe−
i

2h̄
~p·~x
[
−ih̄M̂(t) · ~∇+

mωc

2
N̂(t) · ~x

]
Φ(~x, t) (65)

~̂XΨ = ζe−
i

2h̄
~p·~x

[
1

2

(
M̂(t) + Î

)
· ~x+

ih̄

mωc

(
N̂(t)− Ĵ

)
· ~∇

]
Φ(~x, t)

Instead of proceeding further and solving the Schrödinger equation explicitly, we shall
perform a change of variables which will clarify the meaning of the different magnitudes
entering the theory and which will make facilitate the accomplishment of AQG in the
next subsection. If we define ~r ≡ M̂−1(t) ·~r0, we can easily rewrite the group law (55) and

(56) in terms of ~r and ~R:

t′′ = t′ + t

~r ′′ = ~r + M̂−1(t) · ~r ′

~R′′ = ~R′ + ~R (66)

ζ ′′ = ζ ′ζe
i
h̄
mωc[ 1

2
~r ′·N̂(t)·~r−((1+λ)R′1R2−λR′2R1)]
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where we have added the coboundary generated by −mωc(1
2

+ λ)R1R2 to accommodate

the cocycle, in its ~R-dependent term, to the expression of Sec. 2.2 (except for a global
minus sign).
From this group law we can compute again the left- and right-invariant vector fields:

X̃L
t = ∂

∂t
− ωc~r · Ĵ · ∂∂~r

X̃L
~r = ∂

∂~r
− mωc

2h̄
Ĵ · ~rΞ

X̃L
R1

= ∂
∂R1
− λ

h̄
mωcR2 Ξ

X̃L
R2

= ∂
∂R2
− 1+λ

h̄
mωcR1 Ξ

X̃L
ζ = iζ ∂

∂ζ
≡ Ξ

X̃R
t = ∂

∂t

X̃R
~r = M̂(t) · ∂

∂~r
+ mωc

2h̄
N̂(t) · ~r Ξ

X̃R
R1

= ∂
∂R1
− 1+λ

h̄
mωcR2 Ξ

X̃R
R2

= ∂
∂R2
− λ

h̄
mωcR1 Ξ

X̃R
ζ = iζ ∂

∂ζ
≡ Ξ

(67)

and the commutation relations are now:[
X̃L
t , X̃

L
~r

]
= ωcĴ · X̃

L
~r[

X̃L
t , X̃

L
~R

]
= 0[

X̃L
ri , X̃

L
rj

]
=

mωc

h̄
εijΞ (68)[

X̃L
Ri, X̃

L
Rj

]
= −

mωc

h̄
εijΞ[

X̃L
~r , X̃

L
~R

]
= 0

A glance at the algebra (68) reveals that it is the central extension of the direct sum
of the harmonic oscillator algebra and the Heisenberg algebra. Consequently, the wave
function factorizes into a harmonic oscillator wave function (depending on t and ~r) times

a function of ~R, and the energy spectrum coincides with that of the harmonic oscillator,
the degeneracy being infinite due to the Heisenberg-Weyl symmetry, which in the plane
has only infinite-dimensional unitary irreducible representations.

We are interested in a configuration-space representation, so that a second-order po-
larization is needed. This is found to be:

PHO =< X̃L
p , X̃

L
t −

ih̄

2m

(
X̃L
~r

)2
, ~n · X̃L

~R
, ~n′ · X̃L

~r > (69)

where ~n and ~n′ are arbitrary unit vectors. They can be chosen to be (1, 0) or (0, 1), for
instance.

Imposing these polarization conditions to the wave functions, we obtain the general
form:

Ψ = ζe−
i
h̄
mω[(λn2

1−(1+λ)n2
2)y1y2+(λ+1

2
)n1n2y2

1 ]Φ(y2)e
imωc

2h̄
κ2κ1Ω(κ2, t) (70)

where y1 ≡ ~n · ~R, y2 ≡ ~n · Ĵ · ~R, κ1 ≡ ~n′ · ~r, κ2 ≡ ~n′ · Ĵ · ~r, Φ(y2) is an arbitrary function
and Θ(κ2, t) satisfies the Schrödinger equation:

ih̄
∂

∂t
Ω(κ2, t) =

[
−
h̄2

2m
~∇2
κ2

+
mω2

c

2
κ2

2

]
Ω(κ2, t) (71)
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This is nothing other than the Schrödinger equation for the harmonic oscillator, so that
the solutions are

Ω(κ2, t) =
∑
n

Ane−i(n+1
2

)ωcte−
mωc
2h̄

κ2
2Hn(

√
mωc

h̄
κ2) (72)

where Hn are the Hermite polynomials.
Since the wave functions factorize, the operators X̃R

~R
will act only on the ~R-dependent

part of it, having the same expressions as in (18) (changing there ~x to ~R), and the
operators X̃R

~x will act only on the (~r, t)-dependent part, with the expressions:

X̃R
κ1
≡ ~n · X̃R

~r Ω(κ2, t) =

[
− sinωct

∂

∂κ2

+
i

h̄
mωcκ2 cosωct

]
Ω(κ2, t)

X̃R
κ2
≡ ~n · Ĵ · X̃R

~r Ω(κ2, t) =

[
cosωct

∂

∂κ2
+
i

h̄
mωcκ2 sinωct

]
Ω(κ2, t) (73)

once the (irrelevant) phase factors have been factorized out.

Using the dual transformation to the one taking (~x, ~p) to (~r, ~R), we obtain the expres-

sion of the operators ~̂X and ~̂P in terms of X̃R
~r and X̃R

~R
:

i

h̄
~̂P ≡ X̃R

~x = X̃R
~r

−
i

h̄
~̂X ≡ X̃R

~p =
1

mωc
Ĵ ·
(
X̃R
~r − X̃

R
~R

)
(74)

In addition, by ~̂T we denote the operator −ih̄X̃R
~R

= ~̂P−mωcĴ · ~̂X. It can be easily deduced

that ~̂P has the physical meaning of a linear momentum (mass times velocity), which we

shall simply call momentum, while ~̂T is a momentum commuting with the Hamiltonian,
generally called magnetic translations, and this is associated with the coordinate ~R of
the centre of the circumferences. We can still define another momentum in the theory,

the canonical momentum, as ~̂Π ≡ − ih̄
2

(
X̃R
~r + X̃R

~R

)
, which has the particularity that its

components mutually commute, and, as can be easily checked, is a proper translation
generator: it is written (for t = 0) as ~∇~x when acting on Φ(x, t) in (63) at t = 0. Its

explicit expression and that of ~̂T on Φ(x, t) are:

~̂ΠΨ = ζe−
i

2h̄
~p·~x

[
−
ih̄

2

(
M̂(t) + Î

)
· ~∇+

mωc

4

(
N̂(t)− Ĵ

)
· ~x

]
Φ(~x, t)

~̂TΨ = ζe−
i

2h̄
~p·~x
[
−ih̄~∇−

mωc

2
Ĵ · ~x

]
Φ(~x, t) (75)

The rôle of the different momenta can be clarified by introducing the vector potential

operator in the usual form, ~̂A ≡ −mωc
2

Ĵ · ~̂X = ih̄
2

(
X̃R
~r − X̃

R
~R

)
. Then, the canonical
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momentum is rewritten ~̂Π = ~̂P + ~̂A, and ~̂T = ~̂P + 2~̂A = ~̂Π + ~̂A. Then it is easy to verify

that Ê = 1
2m
~̂P

2

= 1
2m

(
~̂Π− ~̂A

)2

= 1
2m

(
~̂T− 2~̂A

)2

.

4.2 Charged particle in a homogeneous magnetic field in the
plane with periodic boundary conditions

Before imposing the periodic boundary conditions which define the torus, as in Sec. 2.2,
we must determine how these boundary conditions affect each of the coordinates. Clearly,
~x will be affected by the boundary conditions, but it is not clear what happens to ~p. Let
us return to ~r and ~R coordinates, where ~R is the (absolute) position of the centre of the
circumference (the classical trajectory) and ~r is the (relative) position of the particle with

respect to the centre of the circumference, i.e. ~r = ~x − ~R. Therefore, ~R will be subject
to periodic boundary conditions (the same that ~x) while ~r will not, being a relative
coordinate (since the classical energy H is a function of ~r0

2 = ~r 2, periodic boundary
conditions for ~r would imply an upper bound to the energy spectrum, and even more, a
periodic energy spectrum). This makes ~r and ~R coordinates more appropriate to describe
the system with periodic boundary conditions. Now we are ready to apply the results
of Sec. 2.2, having reduced the problem, roughly speaking, to the study of an harmonic
oscillator times a Heisenberg-Weyl group on the torus, the latter being parameterized by
~R.

Regarding the H-W subgroup, we can apply the results of Sec. 2.2. We also consider
the two cases i) and ii), corresponding to T being a trivial or non-trivial principal fibre
bundle, respectively.

Let us consider first the case i) (Sec. 2.2.1), which is the more conventional one. The
actual condition to be satisfied is

mωcL1L2

2πh̄
= n ∈ Z (76)

which implies, as already anticipated, a quantization of the magnetic flux through the
torus surface, in the same manner as in the Dirac monopole case. If this flux were produced
by a monopole charge, the quantization of the magnetic charge would follow. This kind of
quantization condition guarantees, for instance, that the Wilson loop variables in gauge
theories are single-valued [M].

The wave functions turn out to be (70), where Φ(y2) is subject to exactly the same
restrictions as in Sec. 2.2.1, thus leading to the expression (for ~n = (1, 0)):

Φ~α(R2) =
n−1∑
k=0

akΛ
~α
k (R2) (77)

where ~α is defined as before. The wave function is therefore peaked at R2 = α2 + k
n
L2, k ∈

Z (R1 = α2 + k
n
L1, k ∈ Z for ~n = (0, 1)).
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The subgroup GH of good transformations (the ones that preserve the structure of the

wave function) is the subgroup of G̃ with the parameters ~R restricted to be ~R = 1
n
~L~k.

The quantum operators Ê and X̃R
~r are good operators (since the harmonic oscillator part

is not subject to constraints), while the operator X̃R
~R

is a bad operator. If we analyse

these results in terms of the operators ~̂X, ~̂P, ~̂T and ~̂Π by means of the expressions given in

Sec. 4.1, we conclude that the operator ~̂P is a good operator, while ~̂X, ~̂T and ~̂Π are not.
Consequently, the momentum (or velocity) of the particle is a measurable quantity, but
the position, the canonical momentum and the magnetic translations are not observables.
The vector potential operator is of course also a bad operator. For all the bad operators,
their finite expressions (counterparts of η̂ of Sec 2.1.1) can be nevertheless constructed,
since all these expressions are good operators.

For the case ii), only the fractional case a) is physically meaningful. Now the wave
function is defined on a torus r times greater in one direction [N], or, what is the same, it is
a vector-valued (with r components) function [V]; or, in FQHE terminology, the centre of
mass function corresponding to the vacuum is degenerate, r being the degeneration. This
result lends support to the idea that Fractional Quantum Hall Effect is always associated
with multiple-valued wave functions, i.e. degenerate vacua.
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[A-A] Aldaya, V., Azcárraga, J.A.: J. Math. Phys. 23, 1297 (1982)

[A-N-R] Aldaya, V., Navarro-Salas, J., Ramirez, A.: Comm. Math. Phys. 121, 541 (1989)

[A-N-B-L] Aldaya, V., Navarro-Salas, J., Bisquert, J., Loll, R.: J. Math. Phys. 33, 3087
(1992)

[A-B-G-N] Aldaya, V., Bisquert, J., Guerrero, J., Navarro-Salas, J.: J. Phys. A26, 5375
(1993)

[A] Ashtekar, A.: Mathematical problems of non-perturbative Quantum General Rel-
ativity, Lectures delivered at the 1992 Les Houches summer school on Gravitation
and Cosmology (1992)

[As] Asorey, M., Esteve, J.G., Pacheco, A.F.: Phys. Rev. D27, 1852 (1983)

27



[C-D-L] Cohen-Tannoudji, C., Diu, B., Laloë, F.: Mécanique quantique, Tome I, Hermann
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Figure 1: Net current in the superconducting ring against Φ/Φ0.
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