41 research outputs found

    Base excision repair deficient mice lacking the Aag alkyladenine DNA glycosylase.

    Get PDF
    3-methyladenine (3MeA) DNA glycosylases remove 3MeAs from alkylated DNA to initiate the base excision repair pathway. Here we report the generation of mice deficient in the 3MeA DNA glycosylase encoded by the Aag (Mpg) gene. Alkyladenine DNA glycosylase turns out to be the major DNA glycosylase not only for the cytotoxic 3MeA DNA lesion, but also for the mutagenic 1,N6-ethenoadenine (epsilonA) and hypoxanthine lesions. Aag appears to be the only 3MeA and hypoxanthine DNA glycosylase in liver, testes, kidney, and lung, and the only epsilonA DNA glycosylase in liver, testes, and kidney; another epsilonA DNA glycosylase may be expressed in lung. Although alkyladenine DNA glycosylase has the capacity to remove 8-oxoguanine DNA lesions, it does not appear to be the major glycosylase for 8-oxoguanine repair. Fibroblasts derived from Aag -/- mice are alkylation sensitive, indicating that Aag -/- mice may be similarly sensitive

    The Healthy Aging Index analyzed over 15 years in the general population

    Get PDF
    The Healthy Aging Index (HAI), an index of physiological aging, has been demonstrated to predicts mortality, morbidity and disability. We studied the longitudinal development of the HAI to identify aging trajectories and evaluated the role of baseline sociodemographic characteristics and lifestyle factors of the trajectories. Four measurements with intervals of 5 years were included from the Doetinchem Cohort Study. The HAI reflects levels of systolic blood pressure, non-fasting plasma glucose levels, global cognitive functioning, plasma creatinine levels and lung functioning. The HAI score ranges from 0 to 10: higher scores indicate a better health profile. Latent class mixture modelling was used to model within-person change and to identify aging trajectories. Area under the curve was calculated per trajectory to estimate total healthy years. In total, 2324 women and 2013 men were included. One HAI trajectory was identified for women, and two trajectories for men, labelled ‘gradual’ aging and ‘early’ aging. Men who were medium/high educated, below 36 years at baseline, complied with guidelines on physical activity and were not obese in any round were associated with increased odds to ‘gradual’ aging of 1.46, 1.93, 1.26 and 1.76, respectively. Between 30 and 70 years of age, men in the ‘early’ aging trajectory had the least healthy years, followed by women, and ‘gradual’ aging men. This study emphasizes that ‘physiological aging’ is not only an issue of older ages. Between 30 and 70 years of age, ‘early’ aging men and women had approximately five healthy years less compared to ‘gradual’ aging men. Lifestyle factors seem to play an important role in optimal aging

    Natural compounds isolated from African mistletoes (loranthaceae) exert anti-inflammatory and acetylcholinesterase inhibitory potentials : in vitro and in silico studies

    Get PDF
    DATA AVAILABILITY STATEMENT: All data generated or analysed during this study are included in this published article.Please read abstract in article.The Central University of Technology operational expenses and the National Research Foundation (NRF) of South Africa.https://www.mdpi.com/journal/applsciParaclinical Science

    DNA repair modulates the vulnerability of the developing brain to alkylating agents

    Get PDF
    Neurons of the developing brain are especially vulnerable to environmental agents that damage DNA (i.e., genotoxicants), but the mechanism is poorly understood. The focus of the present study is to demonstrate that DNA damage plays a key role in disrupting neurodevelopment. To examine this hypothesis, we compared the cytotoxic and DNA damaging properties of the methylating agents methylazoxymethanol (MAM) and dimethyl sulfate (DMS) and the mono- and bifunctional alkylating agents chloroethylamine (CEA) and nitrogen mustard (HN2), in granule cell neurons derived from the cerebellum of neonatal wild type mice and three transgenic DNA repair strains. Wild type cerebellar neurons were significantly more sensitive to the alkylating agents DMS and HN2 than neuronal cultures treated with MAM or the half-mustard CEA. Parallel studies with neuronal cultures from mice deficient in alkylguanine DNA glycosylase (Aag[superscript −/−]) or O6-methylguanine methyltransferase (Mgmt[superscript −/−]), revealed significant differences in the sensitivity of neurons to all four genotoxicants. Mgmt−/− neurons were more sensitive to MAM and HN2 than the other genotoxicants and wild type neurons treated with either alkylating agent. In contrast, Aag[superscript −/−] neurons were for the most part significantly less sensitive than wild type or Mgmt[superscript −/−] neurons to MAM and HN2. Aag[superscript −/−] neurons were also significantly less sensitive than wild type neurons treated with either DMS or CEA. Granule cell development and motor function were also more severely disturbed by MAM and HN2 in Mgmt[superscript −/−] mice than in comparably treated wild type mice. In contrast, cerebellar development and motor function were well preserved in MAM-treated Aag[superscript −/−] or MGMT-overexpressing (Mgmt[superscript Tg+]) mice, even as compared with wild type mice suggesting that AAG protein increases MAM toxicity, whereas MGMT protein decreases toxicity. Surprisingly, neuronal development and motor function were severely disturbed in Mgmt[superscript Tg+] mice treated with HN2. Collectively, these in vitro and in vivo studies demonstrate that the type of DNA lesion and the efficiency of DNA repair are two important factors that determine the vulnerability of the developing brain to long-term injury by a genotoxicant.United States. Army Medical Research and Materiel Command (Contract/Grant/Intergovernmental Project Order DAMD 17-98-1-8625)United States. National Institutes of Health (grants CA075576)United States. National Institutes of Health (RO1 C63193)United States. National Institutes of Health (P30 CA043703

    The APOE locus is linked to decline in general cognitive function: 20-years follow-up in the Doetinchem Cohort Study

    No full text
    Cognitive decline is part of the normal aging process. However, some people experience a more rapid decline than others due to environmental and genetic factors. Numerous single nucleotide polymorphisms (SNPs) have been linked to cognitive function, but only a few to cognitive decline. To understand whether cognitive function and cognitive decline are driven by the same mechanisms, we investigated whether 433 SNPs previously linked to cognitive function and 2 SNPs previously linked to cognitive decline are associated with both general cognitive functioning at baseline and general cognitive decline up to 20-years follow-up in the Doetinchem Cohort Study (DCS). The DCS is a longitudinal population-based study that enrolled men and women aged 20-59 years between 1987-1991, with follow-up examinations every 5 years. We used data of rounds 2-6 (1993-2017, n = 2559). General cognitive function was assessed using four cognition tests measuring memory, speed, fluency and flexibility. With these test scores, standardized residuals (adjusted for sex, age and examination round) were calculated for each cognition test at each round and subsequently combined into one general cognitive function measure using principal component analyses. None of the 435 previously identified variants were associated with baseline general cognitive function in the DCS. But rs429358-C, a coding apolipoprotein E (APOE) SNP and one of the variants previously associated with cognitive decline, was associated with general cognitive decline in our study as well (p-value = 1 x 10(-5), Beta = -0.013). These findings suggest that decline of general cognitive function is influenced by other mechanisms than those that are involved in the regulation of general cognitive function.Metabolic health: pathophysiological trajectories and therap

    The APOE locus is linked to decline in general cognitive function: 20-years follow-up in the Doetinchem Cohort Study

    No full text
    Cognitive decline is part of the normal aging process. However, some people experience a more rapid decline than others due to environmental and genetic factors. Numerous single nucleotide polymorphisms (SNPs) have been linked to cognitive function, but only a few to cognitive decline. To understand whether cognitive function and cognitive decline are driven by the same mechanisms, we investigated whether 433 SNPs previously linked to cognitive function and 2 SNPs previously linked to cognitive decline are associated with both general cognitive functioning at baseline and general cognitive decline up to 20-years follow-up in the Doetinchem Cohort Study (DCS). The DCS is a longitudinal population-based study that enrolled men and women aged 20-59 years between 1987-1991, with follow-up examinations every 5 years. We used data of rounds 2-6 (1993-2017, n = 2559). General cognitive function was assessed using four cognition tests measuring memory, speed, fluency and flexibility. With these test scores, standardized residuals (adjusted for sex, age and examination round) were calculated for each cognition test at each round and subsequently combined into one general cognitive function measure using principal component analyses. None of the 435 previously identified variants were associated with baseline general cognitive function in the DCS. But rs429358-C, a coding apolipoprotein E (APOE) SNP and one of the variants previously associated with cognitive decline, was associated with general cognitive decline in our study as well (p-value = 1 x 10(-5), Beta = -0.013). These findings suggest that decline of general cognitive function is influenced by other mechanisms than those that are involved in the regulation of general cognitive function

    Phase I trial of inducible caspase 9 T cells in adult stem cell transplant demonstrates massive clonotypic proliferative potential and long-term persistence of transgenic Tcells

    No full text
    Purpose: Inducible caspase 9 (iCasp9) is a cellular safety switch that can make T-cell therapy safer. The purpose of this phase I trial was to investigate the use of iCasp9-transduced T-cell addback in adult patients undergoing haploidentical stem cell transplantation for high-risk hematologic malignancies. Patients and Methods: Patients undergoing myeloablative, CD34-selected haploidentical stem cell transplantation were treated with 0.5-1.0 × 10⁶/kg donor-derived iCasp9-transduced T cells on day + 25 or 26 post-transplant, with additional doses allowed for disease relapse, infection, or mixed chimerism. Results: Three patients were enrolled. iCasp9-transduced T cells were readily detectable by 4 weeks post-infusion in all patients and remained at high level (114 cells/ÎŒL, 11% of T cells) in 1 patient alive at 3.6 years. One patient developed donor-derived Epstein-Barr virus-associated post-transplant lymphoproliferative disease (EBV-PTLD), which was followed by a marked expansion of iCasp9 T cells and cytokine release syndrome (CRS). These iCasp9-transduced T cells infiltrated the affected lymph nodes and secreted IFNÎł and IL-10. They peaked at 1,848 cells/ÎŒL and were found to be monoclonal by T-cell receptor (TCR) clonotype and oligoclonal by viral integrant analysis, representing a 6-log in vivo expansion of the dominant T-cell clone. These T cells were not autonomous and contracted with the resolution of EBV-PTLD, which did not recur. Conclusions: iCasp9-transduced T cells could persist long-term. They retained very high in vivo clonotypic proliferative capacity and function, and could cause CRS in response to de novo lymphoma development.Ping Zhang, Jyothy Raju, Md Ashik Ullah, Raymond Au, Antiopi Varelias, Kate H. Gartlan, Stuart D. Olver, Luke D. Samson, Elise Sturgeon, Nienke Zomerdijk, Judy Avery, Tessa Gargett, Michael P. Brown, Lachlan J. Coin, Devika Ganesamoorthy, Cheryl Hutchins, Gary R. Pratt, Glen A. Kennedy, A. James Morton, Cameron I. Curley, Geoffrey R. Hill, and Siok-Keen Te
    corecore