129 research outputs found

    Criterion A of the AMPD in HiTOP

    Get PDF
    The categorical model of personality disorder classification in the American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders (5th ed. [DSM-5]; American Psychiatric Association, 2013) is highly and fundamentally problematic. Proposed for DSM-5 and provided within Section III (for Emerging Measures and Models) was the Alternative Model of Personality Disorder (AMPD) classification, consisting of Criterion A (self-interpersonal deficits) and Criterion B (maladaptive personality traits). A proposed alternative to the DSM-5 more generally is an empirically based dimensional organization of psychopathology identified as the Hierarchical Taxonomy of Psychopathology (HiTOP; Kotov etal., 2017). HiTOP currently includes, at the highest level, a general factor of psychopathology. Further down are the five domains of detachment, antagonistic externalizing, disinhibited externalizing, thought disorder, and internalizing (along with a provisional sixth somatoform dimension) that align with Criterion B. The purpose of this article is to discuss the potential inclusion and placement of the self-interpersonal deficits of the DSM-5 Section III Criterion A within HiTOP

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM
    corecore