130 research outputs found

    Insulin receptor has tyrosine kinase activity toward Shc in rat liver

    Get PDF
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOInsulin induces tyrosine phosphorylation of Shc in cell cultures and in insulin-sensitive tissues of the intact rat. However, the ability of insulin receptor (IR) tyrosine kinase to phosphorylate Shc has not been previously demonstrated. In the present study, we investigated insulin-induced IR tyrosine kinase activity towards Shc. Insulin receptor was immunoprecipitated from liver extracts, before and after a very low dose of insulin into the portal vein, and incubated with immunopurified Shc from liver of untreated rats. The kinase assay was performed in vitro in the presence of exogenous ATP and the phosphorylation level was quantified by immunoblotting with antiphosphotyrosine antibody. The results demonstrate that Shc interacted with insulin receptor after infusion of insulin, and, more important, there was insulin receptor kinase activity towards immunopurified Shc. The description of this pathway in animal tissue may have an important role in insulin receptor tyrosine kinase activity toward mitogenic transduction pathways.Insulin induces tyrosine phosphorylation of Shc in cell cultures and in insulin-sensitive tissues of the intact rat. However, the ability of insulin receptor (IR) tyrosine kinase to phosphorylate Shc has not been previously demonstrated. In the present study, we investigated insulin-induced IR tyrosine kinase activity towards Shc. Insulin receptor was immunoprecipitated from liver extracts, before and after a very low dose of insulin into the portal vein, and incubated with immunopurified Shc from liver of untreated rats. The kinase assay was performed in vitro in the presence of exogenous ATP and the phosphorylation level was quantified by immunoblotting with antiphosphotyrosine antibody. The results demonstrate that Shc interacted with insulin receptor after infusion of insulin, and, more important, there was insulin receptor kinase activity towards immunopurified Shc. The description of this pathway in animal tissue may have an important role in insulin receptor tyrosine kinase activity toward mitogenic transduction pathways311114151419FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOsem informaçã

    Nitric oxide released from luminal s-nitroso-n-acetylcysteine increases gastric mucosal blood flow

    Get PDF
    Nitric oxide (NO)-mediated vasodilation plays a key role in gastric mucosal defense, and NO-donor drugs may protect against diseases associated with gastric mucosal blood flow (GMBF) deficiencies. In this study, we used the ex vivo gastric chamber method and Laser Doppler Flowmetry to characterize the effects of luminal aqueous NO-donor drug S-nitroso-N-acetylcysteine (SNAC) solution administration compared to aqueous NaNO2 and NaNO3 solutions (pH 7.4) on GMBF in Sprague-Dawley rats. SNAC solutions (600 μM and 12 mM) led to a rapid threefold increase in GMBF, which was maintained during the incubation of the solutions with the gastric mucosa, while NaNO2 or NaNO3 solutions (12 mM) did not affect GMBF. SNAC solutions (600 μM and 12 mM) spontaneously released NO at 37 °C at a constant rate of 0.3 or 14 nmol·mL-1·min-1, respectively, while NaNO2 (12 mM) released NO at a rate of 0.06 nmol·mL-1·min-1 and NaNO3 (12 mM) did not release NO. These results suggest that the SNAC-induced GMBF increase is due to their higher rates of spontaneous NO release compared to equimolar NaNO2 solutions. Taken together, our data indicate that oral SNAC administration is a potential approach for gastric acid-peptic disorder prevention and treatment.Nitric oxide (NO)-mediated vasodilation plays a key role in gastric mucosal defense, and NO-donor drugs may protect against diseases associated with gastric mucosal blood flow (GMBF) deficiencies. In this study, we used the ex vivo gastric chamber method and Laser Doppler Flowmetry to characterize the effects of luminal aqueous NO-donor drug S-nitroso-N-acetylcysteine (SNAC) solution administration compared to aqueous NaNO2 and NaNO3 solutions (pH 7.4) on GMBF in Sprague-Dawley rats. SNAC solutions (600 μM and 12 mM) led to a rapid threefold increase in GMBF, which was maintained during the incubation of the solutions with the gastric mucosa, while NaNO2 or NaNO3 solutions (12 mM) did not affect GMBF. SNAC solutions (600 μM and 12 mM) spontaneously released NO at 37 °C at a constant rate of 0.3 or 14 nmol·mL-1·min-1, respectively, while NaNO2 (12 mM) released NO at a rate of 0.06 nmol·mL-1·min-1 and NaNO3 (12 mM) did not release NO. These results suggest that the SNAC-induced GMBF increase is due to their higher rates of spontaneous NO release compared to equimolar NaNO2 solutions. Taken together, our data indicate that oral SNAC administration is a potential approach for gastric acid-peptic disorder prevention and treatment2034109412

    Identification of insulin in the tear film and insulin receptor and IGF-I receptor on the human ocular surface

    Get PDF
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORCNPQ – CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOInsulin produces pleiotropic effects on sensitive tissues. including the ocular surface, through the tyrosine kinase insulin receptor. Cerebrospinal fluid and secreted fluids, such as milk and saliva, have been reported to contain insulin. In the present study, the presence of insulin was examined in tear film, and the expression of insulin and insulin-like growth factor (IGF)-1 receptor was examined in the human cornea and conjunctiva. METHODS. Stimulated tear samples collected from 33 volunteers (17 men, 16 women), aged 23 to 51 years, who were fed or fasted for 12 hours, were assayed for total protein and insulin content by the biuret dye test and a radioimmunoassay, respectively. Frozen sections of human cornea (n = 4) and conjunctiva (n = 3) were incubated with anti-insulin receptor and anti-IGF-1 receptor antibodies and developed with a secondary antibody-peroxidase conjugate. RESULTS. Insulin was detected in all tear samples analyzed, the mean concentration being 0.404 +/- 0.129 ng/mL. There were no gender-related differences. In fed subjects, tears tended toward a higher insulin content than those in fasted individuals. There was no linear correlation between insulin and total protein content (mean, 4.61 +/- 0.79 mg/mL) in the tear film. Insulin and IGF-1 receptors were detected in the plasma membrane and cytoplasm of corneal and conjunctival epithelial cells. CONCLUSIONS. To the best of the authors' knowledge, this Study represents the first demonstration of insulin in human tear film and the presence of insulin and IGF-1 receptor on the human ocular surface. These results suggest that the pancreatic hormone may play a metabolic and/or mitogenic role on the ocular surfaceO TEXTO COMPLETO DESTE ARTIGO, ESTARÁ DISPONÍVEL À PARTIR DE FEVEREIRO DE 2015.434963967FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORCNPQ – CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORCNPQ – CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOsem informaçãosem informaçãosem informaçã

    (-)-tarchonanthuslactone exerts a blood glucose-increasing effect in experimental type 2 diabetes mellitus

    Get PDF
    A number of studies have proposed an anti-diabetic effect for tarchonanthuslactone based on its structural similarity with caffeic acid, a compound known for its blood glucose-reducing properties. However, the actual effect of tarchonanthuslactone on blood glucose level has never been tested. Here, we report that, in opposition to the common sense, tarchonanthuslactone has a glucose-increasing effect in a mouse model of obesity and type 2 diabetes mellitus. The effect is acute and non-cumulative and is present only in diabetic mice. In lean, glucose-tolerant mice, despite a slight increase in blood glucose levels, the effect was not significant.A number of studies have proposed an anti-diabetic effect for tarchonanthuslactone based on its structural similarity with caffeic acid, a compound known for its blood glucose-reducing properties. However, the actual effect of tarchonanthuslactone on blood glucose level has never been tested. Here, we report that, in opposition to the common sense, tarchonanthuslactone has a glucose-increasing effect in a mouse model of obesity and type 2 diabetes mellitus. The effect is acute and non-cumulative and is present only in diabetic mice. In lean, glucose-tolerant mice, despite a slight increase in blood glucose levels, the effect was not significant2035038504

    Prolactin-signal transduction in neonatal rat pancreatic islets and interaction with the insulin-signaling pathway

    Get PDF
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORCNPQ – CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICODuring pregnancy, pancreatic islets undergo structural and functional changes in response to an increased demand for insulin. Different hormones, especially placental lactogens, mediate these adaptive changes. Prolactin (PRL) mainly exerts its biological effects by activation of the JAK2/STAT5 pathway. PRL also stimulates some biological effects via activation of IRS-1, IRS-2, PI 3-kinase, and MAPK in different cell lines. Since IRS-2 is important for the maintenance of pancreatic islet cell mass, we investigated whether PRL affects insulin-signaling pathways in neonatal rat islets. PRL significantly potentiated glucose-induced insulin secretion in islets cultured for 7 days. This effect was blocked by the specific PI 3-kinase inhibitor wortmannin. To determine possible effects of PRL on insulin-signaling pathways, fresh islets were incubated with or without the hormone for 5 or 15 min. Immunoprecipitation and immunoblotting with specific antibodies showed that PRL induced a dose-dependent IRS-1 and IRS-2 phosphorylation compared to control islets. PRL-induced increase in IRS-1/-2 phosphorylation was accompanied by an increase in the association with and activation of PI 3-kinase. PRL-induced IRS-2 phosphorylation and its association with PI 3-kinase did not add to the effect of insulin. PRL also induced JAK2, SHC, ERK1 and ERK2 phosphorylation in neonatal islets, demonstrating that PRL can activate MAPK. These data indicate that PRL can stimulate the IRSs/PI 3-kinase and SHC/ERK pathways in islets from neonatal rats355282289FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORCNPQ – CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORCNPQ – CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOsem informaçãosem informaçãosem informaçã

    Interaction between leptin and insulin signaling pathways differentially affects JAK-STAT and Pl 3-kinase-mediated signaling in rat liver

    Get PDF
    Chronic leptin treatment markedly enhances the effect of insulin on hepatic glucose production unproportionally with respect to body weight loss and increased insulin sensitivity. In the present study the cross-talk between insulin and leptin was evaluated in rat liver. Upon stimulation of JAK2 tyrosine phosphorylation, leptin induced JAK2 co-immunoprecipitation with STAT3, STAT5b, IRS-1 and IRS-2. This phenomenon parallels the leptin-induced tyrosine phosphorylation of STAT3, STAT5b, IRS-1 and IRS-2. Acutely injected insulin stimulated a mild increase in tyrosine phosphorylation of JAK2, STAT3 and STAT5b. Leptin was less effective than insulin in stimulating IRS phosphorylation and their association with PI 3-kinase. Simultaneous treatment with both hormones yielded no change in maximal phosphorylation of STAT3, IRS-1, IRS-2 and Akt, but led to a marked increase in tyrosine phosphorylation of JAK2 and STAT5b when compared with isolated administration of insulin or leptin. This indicates that there is a positive cross-talk between insulin and leptin signaling pathways at the level of JAK2 and STAT5b in rat liver

    Defective apoptosis in intestinal and mesenteric adipose tissue of crohn's disease patients

    Get PDF
    Background: Crohn's disease (CD) is associated with complex pathogenic pathways involving defects in apoptosis mechanisms. Recently, mesenteric adipose tissue (MAT) has been associated with CD ethiopathology, since adipose thickening is detected close to the affected intestinal area. However, the potential role of altered apoptosis in MAT of CD has not been addressed. Aims: To evaluate apoptosis in the intestinal mucosa and MAT of patients with CD. Methods: Samples of intestinal mucosa and MAT from patients with ileocecal CD and from non-inflammatory bowel diseases patients (controls) were studied. Apoptosis was assessed by TUNEL assay and correlated with the adipocytes histological morphometric analysis. The transcriptional and protein analysis of selected genes and proteins related to apoptosis were determined. Results: TUNEL assay showed fewer apoptotic cells in CD, when compared to the control groups, both in the intestinal mucosa and in MAT. In addition, the number of apoptotic cells (TUNEL) correlated significantly with the area and perimeter of the adipose cells in MAT. Transcriptomic and proteomic analysis reveal a significantly lower transcript and protein levels of Bax in the intestinal mucosa of CD, compared to the controls; low protein levels of Bax were found localized in the lamina propria and not in the epithelium of this tissue. Furthermore, higher level of Bcl-2 and low level of Caspase 3 were seen in the MAT of CD patients. Conclusion: The defective apoptosis in MAT may explain the singular morphological characteristics of this tissue in CD, which may be implicated in the pathophysiology of the disease. © 2014 Dias et al.Crohn's disease (CD) is associated with complex pathogenic pathways involving defects in apoptosis mechanisms. Recently, mesenteric adipose tissue (MAT) has been associated with CD ethiopathology, since adipose thickening is detected close to the affected intestinal area. However, the potential role of altered apoptosis in MAT of CD has not been addressed. Aims: To evaluate apoptosis in the intestinal mucosa and MAT of patients with CD. Methods: Samples of intestinal mucosa and MAT from patients with ileocecal CD and from non-inflammatory bowel diseases patients (controls) were studied. Apoptosis was assessed by TUNEL assay and correlated with the adipocytes histological morphometric analysis. The transcriptional and protein analysis of selected genes and proteins related to apoptosis were determined. Results: TUNEL assay showed fewer apoptotic cells in CD, when compared to the control groups, both in the intestinal mucosa and in MAT. In addition, the number of apoptotic cells (TUNEL) correlated significantly with the area and perimeter of the adipose cells in MAT. Transcriptomic and proteomic analysis reveal a significantly lower transcript and protein levels of Bax in the intestinal mucosa of CD, compared to the controls; low protein levels of Bax were found localized in the lamina propria and not in the epithelium of this tissue. Furthermore, higher level of Bcl-2 and low level of Caspase 3 were seen in the MAT of CD patients. Conclusion: The defective apoptosis in MAT may explain the singular morphological characteristics of this tissue in CD, which may be implicated in the pathophysiology of the disease96e9854

    Exercise during pregnancy protects adult mouse offspring from diet-induced obesity

    Get PDF
    BACKGROUND: Physical exercise induces positive alterations in gene expression involved in the metabolism of obesity. Maternal exercise provokes adaptations soon after birth in the offspring. Here, we investigated whether adult mouse offspring of swim-trained mothers is protected against the development of the deleterious effects of high fat diet (HFD). METHODS: Our study comprises two parts. First, female C57BL/6 mice were divided into one sedentary and one swim-trained group (before and during pregnancy, n = 18). In the second part, adult offspring (n = 12) of trained and sedentary mothers was challenged to HFD for 16 weeks. Notably, most of the analysis was done in male offspring. RESULTS: Our results demonstrate that maternal exercise has several beneficial effects on the mouse offspring and protects them from the deleterious effects of HFD in the adult. Specifically, swimming during pregnancy leads to lower birth weight in offspring through 2 months of age. When subjected to HFD for 4 month in the adulthood, our study presents novel data on the male offspring's metabolism of trained mothers. The offspring gained less weight, which was accompanied by less body fat, and they used more calories during daytime compared with offspring of sedentary mothers. Furthermore, we observed increased adiponectin expression in skeletal muscle, which was accompanied by decreased leptin levels and increased insulin sensitivity. Decreased interleukin-6 expression and increased peptide PYY levels were observed in sera of adult offspring of mothers that swam during pregnancy. CONCLUSIONS: Our results point to the conclusion that maternal exercise is beneficial to protect the offspring from developing obesity, which could be important for succeeding generations as well

    ER stress activation in the intestinal mucosa but not in mesenteric adipose tissue is associated with inflammation in Crohn’s disease patients

    Get PDF
    Chronic/abnormal activation of endoplasmic reticulum (ER) stress is linked to the exacerbation of the inflammatory process and has been recently linked to Crohn’s disease (CD) pathophysiology. We investigated the intestinal mucosa and the mesenteric adipose tissue (MAT) collected from CD patients with active disease (CD group) and from non-IBD patients (CTR group) to study ER stress activation and to address tissue-specific modulation in CD. The intestinal mucosa of CD patients showed an upregulation in the expression of ER stress related genes, including ATF3, DNAJC3, STC2, DDIT3, CALR, HSPA5 and HSP90B1. Results showed that EIF2AK3 gene was upregulated, along with increased protein expression of p-eIF2α and p-eIF2α/eIF2α ratio. Additionally, ERN1 gene expression was upregulated, along with an increased spliced/activated form sXBP1 protein. Despite the upregulation of ATF6 gene expression in the intestinal mucosa of CD patients, no differences were found in ATF6 protein expression. Lastly, the analysis of MAT revealed unchanged levels of ER stress markers along with no differences in the activation of UPR. However, chaperone gene expression was modulated in the MAT of CD patients. To conclude, our results address tissue-specific differences in UPR activation in CD and point the ER stress as an important pro-inflammatory mechanism in CD, specifically in the intestinal mucosa149CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP401270/2016-502-P-28707/20122016/01638-
    corecore