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Introduction

Prolactin, a hormone that belongs to the growth hormone-pla-
cental lactogen family, signals through a transmembrane recep-
tor (PRLR) of the cytokine receptor superfamily. Once bound to
its receptor, PRL induces the phosphorylation and activation of
the associated kinase JAK2 that leads to receptor dimerization
and phosphorylation/activation of STAT5. Activated STAT5 forms
homodimers that migrate to the nucleus, binding to specific DNA
sequences and modulating gene transcription [1–5].

In addition to the JAK/STAT-signaling pathway, PRL also activates
the SHC/GRB-2/SOS and Ras/Raf/MAP-kinase cascades [6,7].
SHC, an SH2-/plekstrin homology domain-containing protein,
may be activated through JAK2 or through binding to proteins
belonging to the insulin-receptor substrate (IRS) family [8]. Acti-
vation of these cascades targets the PRL signal to the nucleus and
contributes to the pleiotropic actions of the hormone [9,10].
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Abstract

During pregnancy, pancreatic islets undergo structural and func-
tional changes in response to an increased demand for insulin.
Different hormones, especially placental lactogens, mediate
these adaptive changes. Prolactin (PRL) mainly exerts its biologi-
cal effects by activation of the JAK2/STAT5 pathway. PRL also
stimulates some biological effects via activation of IRS-1, IRS-2,
PI 3-kinase, and MAPK in different cell lines. Since IRS-2 is impor-
tant for the maintenance of pancreatic islet cell mass, we inves-
tigated whether PRL affects insulin-signaling pathways in neo-
natal rat islets. PRL significantly potentiated glucose-induced in-
sulin secretion in islets cultured for 7 days. This effect was
blocked by the specific PI 3-kinase inhibitor wortmannin. To de-
termine possible effects of PRL on insulin-signaling pathways,
fresh islets were incubated with or without the hormone for 5

or 15 min. Immunoprecipitation and immunoblotting with
specific antibodies showed that PRL induced a dose-dependent
IRS-1 and IRS-2 phosphorylation compared to control islets.
PRL-induced increase in IRS-1/-2 phosphorylation was accompa-
nied by an increase in the association with and activation of PI 3-
kinase. PRL-induced IRS-2 phosphorylation and its association
with PI 3-kinase did not add to the effect of insulin. PRL also in-
duced JAK2, SHC, ERK1 and ERK2 phosphorylation in neonatal is-
lets, demonstrating that PRL can activate MAPK. These data indi-
cate that PRL can stimulate the IRSs/PI 3-kinase and SHC/ERK
pathways in islets from neonatal rats.
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In hepatocytes, PRL activates IRS-1/-2/-3, which in turn activates
PI 3-kinase through JAK2 [8]. Activation of the IRS-PI 3-kinase
pathways by insulin and IGF-1 [11–15] is important for regulat-
ing cell metabolism, apoptosis and mitogenesis [16].

During pregnancy, pancreatic islets undergo structural and func-
tional changes in response to an increased peripheral demand for
insulin [17–19]. The total islet mass increases, mainly as a conse-
quence of B-cell hypertrophy and hyperplasia [20–23]. Insulin
secretion in response to glucose is also enhanced, which is reflec-
ted by a shift to the left in glucose dose-response curves in isolat-
ed islets [19]. These adaptive changes are mediated by a variety
of hormonal, chemical and neural signals to the islets [2,3,5,24].
Placental lactogens, including PRL, play an important role in
these adaptations [25–29]. The control of islet development
and growth may also depend on the activity of the insulin/IGF-1
signaling pathway. Thus, targeted disruption of IRS-2 leads to
diabetes as a result of increased peripheral insulin resistance
and impairment of pancreatic B-cell function [30].

Since PRL and insulin/IGF-1 participate in the growth and ma-
turation of pancreatic islet cells, we examined the crosstalk be-
tween the PRL and insulin/IGF-1-signaling pathways in neonatal
rat islets.

Materials and Methods

Materials
The reagents and apparatus for SDS-PAGE and immunoblotting
were obtained from Bio-Rad (Richmond, CA, USA). Tris, Triton-X
100, Tween 20, glycerol, acrylamide, bis-acrylamide, bovine se-
rum albumin (BSA, fraction V), PMSF, sodium pyrophosphate, so-
dium fluoride, sodium vanadate, EDTA, EGTA, aprotinin, leupep-
tin, benzamidine, DTT, glycerol, Nonidet P-40, Ficoll, Hepes,
RPMI-1640 medium, ATP, collagenase type V, and wortmannin
were from Sigma (St. Louis, MO, USA). Rat PRL was from Dr. A. F.
Parlow, Harbor University of California Los Angeles Medical Cen-
ter and kindly provided by the National Hormone and Pituitary
Program of the NIDDK). [125I] Protein A, [125I] insulin and nitrocel-
lulose membranes (Hybond N, 0.45Nm) were from Amersham
(Buckinghamshire, UK), and protein A Sepharose 6 MB was from
Pharmacia (Uppsala, Sweden). Anti-phosphotyrosine (mouse
monoclonal), anti-IRS-1 (rabbit polyclonal), anti-IRS-2 (goat
polyclonal), anti-SHC (rabbit polyclonal), and anti-JAK-2 (rabbit
polyclonal) antibodies were from Santa Cruz Biotechnology, Inc.
(Santa Cruz, CA, USA); anti-PI 3-kinase p85 (rabbit polyclonal)
was from UBI (Lake Placid, NY,USA) and anti-ERK (p44/42 MAPK
mouse monoclonal) was from Biolabs Inc. (New England,USA). L-
a-phosphatidylinositol (liver-sodium salt) was from Avanti Po-
lar-Lipids (Alabaster, AL, USA) and human insulin from Biobras
AS (Brazil).

Islet isolation and culture
For each set of experiments, islets from 80–100 neonatal rats
(2–3 days old) were obtained as described [28,31] and main-
tained in culture at 37 8C in a 5% CO2/air atmosphere for 2 to 7
days. The culture medium consisted of RPMI–1640 supplemen-
ted with 10% fetal bovine serum, 10 mmol glucose/l, 100 IU/ml
penicillin, 100 Ng/ml streptomycin, and PRL (0.1 Ng/ml) and wort-

mannin (0.1 Ng/ml) as required. After culture, the islets were sep-
arated from the remaining exocrine pancreatic debris by centri-
fugation in Ficoll gradients and distributed equally in three poly-
propylene Eppendorf tubes. The islets were incubated at 37 8C for
5 min or 15 min in Hanks solution containing 5.6 mmol glucose/l,
1 mg/ml BSA, and PRL and/or insulin as required.

Tissue extracts and immunoblotting
After incubation, the islets were homogenized in 300 Nl of solu-
bilization buffer (10% Triton-X 100, 100 mmol Tris/l (pH 7.4),
10 mmol sodium pyrophosphate/l, 100 mmol sodium fluoride/l,
10 mmol EDTA/l, 10 mmol sodium vanadate/l, 2 mmol PSMF/l,
and 0.1 mg/ml aprotinin for 30 s using a Polytron PT 1200 C
homogenizer (Brinkmann Instruments, NY, USA). The tissue ex-
tracts were centrifuged at 12,000 rpm at 4 8C for 20 min and the
supernatant was used for the determination of protein, and for
immunoprecipitation.

Immunoprecipitation was performed with 15 Nl of anti-IRS-1/-2,
anti-SHC, or anti-JAK2 antibodies at 4 8C overnight. The immune
complexes were then precipitated with protein A-Sepharose 6
MB for 2 h. The pellets were washed three times in buffer con-
taining 100 mmol Tris/l, 2 mmol sodium vanadate/l, 1 mmol
EDTA/l, and 0.5% Triton X-100, resuspended in 18 Nl of Laemmli
sample buffer [32] and boiled for 5 min prior to loading onto
polyacrylamide gels (8% for anti-IRS-1/-2 and anti-JAK2, 15% for
anti-SHC). For total extracts, aliquots containing 180 Ng of pro-
tein were run in 12% polyacrylamide gels SDS in a Bio-Rad minia-
ture slab gel apparatus (Mini-Protean) [33].

The electrotransfer of proteins from the gel to nitrocellulose was
undertaken for 2 h at 120 V using a Bio-Rad miniature transfer
apparatus. Non-specific protein binding to nitrocellulose was re-
duced by preincubating the filter in blocking buffer (3% BSA,
10 mmol Tris/l, 150 mmol NaCl/l, and 0.02% Tween 20) for 2 h at
22 8C. The nitrocellulose membranes were then incubated for 2 h
at 22 8C with antiphophotyrosine antibody, or anti-PI 3-kinase
diluted in blocking buffer, and washed for 30 min in blocking
buffer without BSA. The blots were then incubated with 2 NCi of
[125I] Protein A (30 NCi/Ng) in 10 ml of blocking buffer for 1 h at
22 8C and washed again as described above for 2 h. [125I] protein
A bound to the antibodies was detected by autoradiography
using pre-flashed Kodak film at – 80 8C for 24–60 h. Band inten-
sities were quantified by optical densitometry (model GS 300;
Hoefer Scientific Instruments, San Francisco, CA, USA) of the au-
toradiograph.

Phosphatidylinositol 3-kinase activity
PI 3-kinase activity was measured by phosphorylation of phos-
phatidylinositol in vitro. After isolation, the islets were incubated
with or without of 2 Ng/ml prolactin for 5 min or 15 min and then
homogenized in 200 Nl of ice-cold solubilization buffer (buffer
A). The solubilization buffer A contained (in mmol/l) Hepes
(pH 7.4) 50, NaCl 137, MgCl2 1,CaCl2 1, sodium vanadate 2, sodium
pyrophosphate 10, sodium fluoride 100, EDTA 2, benzamidine 10,
PMSF 2, 1% Nonidet P-40, 10% glycerol, 2 Ng/ml aprotinin, and
5 Ng/ml leupeptin. IRS-1 and 2 were immunoprecipitated from
aliquots of the supernatant (1.5 mg/ml protein) by adding anti-
IRS-1 and 2 antibodies followed by protein A Sepharose 6 MB
and incubation for 2 h. The immunoprecipitates were washed
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three times with phosphate-buffered saline containing 1% Noni-
det P-40 and 100 Nmol sodium vanadate/l, twice with buffer con-
taining 100 mmol Tris/l (pH 7.5), 500 mmol LiCl2/l, and 100 Nmol
sodium vanadate/l, and twice with buffer containing 10 mmol
Tris/l (pH 7.5), 100 mmol NaCl/l, and 1 mmol EDTA/l. The pellets
were resuspended in 50 Nl of 10 mmol Tris/l (pH 7.5) containing
100 mmol NaCl/l, 1 mmol EDTA/l, and 100 Nmol sodium vana-
date/l. 10 Nl of 100 mmol MgCl2/l and 10 Nl of phosphatidylinosi-
tol (2 Ng/Nl) previously sonicated in 10 mmol Tris buffer/l
(pH 7.5) with 1 mmol EGTA/l were added to each pellet. The PI
3-kinase reaction was started by adding of 10 Nl of 440 Nmol
ATP/l containing 30 NCi of [32P] ATP. After 10 min at room tem-
perature with constant shaking, the reaction was stopped by
adding 20 Nl of 8 N HCl and 160 Nl of CHCl3:methanol (1:1). The
samples were centrifuged, and the lower organic phase was re-
moved and applied to silica gel TLC (thin-layer chromatography)
plates (Merck) coated with 1% potassium oxalate. The plates
were resolved in CHCl3:CH3OH:H2O:NH4OH (60:47:11,3:2),
dried, and visualized by autoradiography [11].

Insulin secretion
Groups of ten islets were first incubated for 45 min at 37 8C in
Krebs-bicarbonate buffer containing 5.6 mM glucose and equili-
brated with 95% O2/5% CO2 at pH 7.4. The solution was then
replaced with fresh Krebs-bicarbonate buffer and the islets
were incubated for a further hour with medium containing (in
mmol/l) glucose 2.8 or 22.2 or 40 mmol K+/l. The incubation
medium contained (in mmol/l): NaCl 115, KCl 5, NaHCO3 24,
CaCl2 2.56, MgCl2 1, and BSA 0.3% (w/v). The cumulative insulin
release during one hour was quantified by radioimmunoassay
using rat insulin as standard.

Statistical analysis
Experiments were always performed by comparing samples
from islets treated with PRL and/or insulin in parallel with con-
trol islets. For comparisons, Student’s t-test for unpaired samples
was used. The level of significance was set at p < 0.05.

Results

Insulin secretion
In the presence of 2.8 mmol glucose/l, insulin secretion was
0.27 S 0.06 ng/islet per hour (n = 8). The secretion was increased
to 1.0 S 0.25 and 1.5 S 0.37 ng/islet per hour in the presence of
22.2 glucose/l and 40 mmol K+/l, respectively (n = 8; p < 0.05).
The treatment of isolated islets with 2 Ng/ml PRL for short period
(5–15 min) did not change the insulin secretion compared to is-
lets incubated with 2.8 or 22.2 mmol glucose/l in the absence of
PRL (data not shown). However, glucose-induced insulin secre-
tion in islets cultured for 7 days in the presence of 0.1 Ng/ml PRL
was significantly higher than control islets (p < 0.05). The pres-
ence of wortmannin in the culture medium abolished the poten-
tiation effect of PRL (p < 0.05 PRL + Wor vs. PRL alone). Wortman-
nin per se did not affect insulin secretion induced by 22.2 mmol
glucose/l after 7 days culture (Fig.1).

Phosphorylation of IRS-1, IRS-2 and their association
with the p85 subunit of PI 3-kinase
To explore possible connections between PRL and the insulin-
signaling pathway in neonatal islet cells, groups of 1,500 islets
were incubated with or without different concentrations (0.02,
0.1 and 2 Ng/ml) of PRL for 5 min or 15 min. As a whole, the pro-
tein levels of IRS-1 and IRS-2 were no different from control val-
ues (Fig. 2A, upper and lower panels). Immunoprecipitation of
islet extracts with anti-IRS-1 or anti-IRS-2 followed by immuno-
blotting with anti-phosphotyrosine antibodies revealed a dose-
response increase in IRS-1 and IRS-2 phosphorylation induced
by PRL. After 15 min incubation, physiological concentrations of
0.02 Ng/ml PRL increased IRS-1 and IRS-2 phosphorylation by ap-
proximately 2.3-fold over basal values (p < 0.05). PRL-induced
maximal IRS-1 and IRS-2 phosphorylation after 15 min exposure
was obtained with 2 Ng/ml PRL, reaching 4-fold and 6.8-fold in-
crease over basal, respectively. Two Ng/ml PRL also increased IRS-
1 and IRS-2 phosphorylation by 2.2-fold and 3-fold over basal,
respectively, after 5 min incubation (Fig. 2B, upper and lower
panels). The increase in the phosphorylation of IRS-1 and IRS-2
was accompanied by an association with the enzyme PI 3-kinase,
as determined by immunoblotting of the complex with antibody
to the regulatory subunit (p85) of the protein. A significant in-
crease (2.2- and 2.8-fold) in the association of IRS-1 and IRS-2
with PI 3-kinase was observed after exposure to 2 Ng/ml PRL for
5 min. The increased association between IRS-1/PI 3-kinase was
2.5-fold, 3.0-fold and 6.1-fold in the presence 0.02, 0.1 and 2 Ng/
ml PRL, respectively, after 15 min (p < 0.05 vs. basal values),
whereas the association between IRS-2 and PI 3-kinase was 3.4-
fold, 4-fold and 5.2-fold in the presence of the above PRL concen-
trations after 15 min (p < 0.05 compared with control values)
(Fig. 2C, upper and lower panels).

Fig. 1 Effect of PRL and wortmannin (Wor) on glucose-induced insulin
secretion in 7 days cultured neonatal rat islets. Islets were cultured in
RPMI medium containing or not 0.1 !g/ml PRL and/or wortmannin.
Groups of 10 islets were then first incubated for 45min at 37 8C in
Krebs-bicarbonate buffer containing 5.6mmol glucose/l and equilibra-
ted with 95% O2/5% CO2, pH 7.4. The solution was then replaced with
fresh Krebs-bicarbonate buffer and the islets were incubated for a fur-
ther 1 h with medium containing 2.8 open bars or 22.2mmol glucose/l
closed bars. The bars represent cumulative insulin secretion release
during 1 h. Data were mean 8 SEM of 9 experiments. *p < 0.05 (PRL
vs. PRL + Wor).
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PRL and insulin induce phosphorylation of IRS-2 and
its association with the p85 subunit of PI 3-kinase
PRL (0.1 Ng/ml), insulin (10–7mol/l) and the association of both
hormones increased IRS-2 phosphorylation after 15 min by 6-
fold, 10-fold and 6.5-fold over basal values, respectively
(p < 0.05) (Fig. 3B). The increase in IRS-2 phosphorylation was
accompanied by an increase in the association of IRS-2 with the
p85 subunit of PI 3-kinase by 6-fold, 8 fold and 5.8-fold over ba-
sal in the presence of 0.1 Ng/ml PRL, 10–7 mol/l insulin and the
association of both hormones, respectively (p < 0.05) (Fig. 3C).
No differences in the protein content of IRS-2 were detected
(Fig. 3A).

Induction of phosphatidylinositol 3-kinase activity by PRL
treatment
Recent studies that evaluated the role of IRS-1 and IRS-2 in pan-
creatic islets by using knock-out mice with no IRS-1 or IRS-2 in-
dicated that IRS-2 may participate in pathways that control islet

growth. To assess the involvement of PRL in IRS-1/-2 dependent
activation of PI 3-kinase, islets were incubated with or without
PRL (2 Ng/ml) and homogenized and immunoprecipitated with
anti-IRS-1/-2 antibodies. PI 3-kinase activity was assayed as de-
scribed in Materials and Methods. Incubation of islets with PRL
for 15 min increased the IRS-1 associated PI 3-kinase activity by
5-fold (Fig. 4A), and the IRS-2 associated PI 3-kinase activity by
7.3-fold (Fig. 4B) compared to the control values.

PRL induces tyrosine phosphorylation of JAK2
The binding of PRL to its receptor leads to tyrosine phosphoryla-
tion and the activation of JAK2, followed by receptor dimeriza-
tion, recruitment of STAT5 and the initiation of nuclear signaling.
The incubation of 1,500 neonatal pancreatic islets with 2 N/ml
PRL for 5 min or 15 min resulted in 3-fold and 7-fold increases
in tyrosine phosphorylation of JAK2, respectively (Fig. 5B). No
differences in the protein levels were detected (Fig. 5A).

Fig. 2 PRL-induced tyrosine phosphoryla-
tion of IRS-1/2 and their association with PI
3-kinase in pancreatic islet cells. Extracts of
islets incubated for 5min and 15min in
Hanks solution containing 5.6mmol glu-
cose/l in the absence or presence of 0.02, 0.1
and 2 !g/ml PRL were immunoprecipitated
(IP) with anti-IRS-1 and -2 antibodies and
immunoblotted (IB) with anti-phosphotyro-
sine antibody (B, upper and lower panels).
The nitrocellulose membrane transfers were
stripped and probed with anti-p85 antibod-
ies (C, upper and lower panels). To ascertain
the protein amounts of IRS-1 and IRS-2, total
protein extracts of neonatal pancreatic islets
were submitted to SDS-PAGE and blotted
with anti-IRS-1 and -2 antibodies (A, upper
and lower panels). The bars represent the
relative protein levels, phosphorylation of
IRS-1/2 and the binding of p85 as deter-
mined by optical densitometry, and are the
mean 8 SEM of four experiments. *p < 0.05
vs. basal values (c) after a 15min incubation
without PRL.
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Fig. 4 PRL-induced PI 3-kinase activity associated with IRS-1/2 in pan-
creatic islet cells. Extracts of islets incubated for 5min and 15min in
Hanks solution containing 5.6mmol glucose/l and 2 !g/ml PRL (when
required) were immunoprecipitated with anti-IRS-1/2 antibodies. PI 3-
kinase in the immunoprecipitates was assayed as described in Meth-
ods. Autoradiographs show the silica TLC plate profiles of IRS-1 (A)
and IRS-2 (B) associated PI 3-kinase activity. ORI, the origin; PIP, the
migration of PI 3-P. The bars represent the relative incorporation of
32P into PI 3-P (mean 8 SEM) from three experiments. *p < 0.05 vs. ba-
sal values (c) after a 5min incubation without PRL.

Fig. 3 PRL and insulin (INS) induces phos-
phorylation of IRS-2 and its association with
the p85 subunit of PI 3-kinase in pancreatic
islet cells. Extracts of islets incubated for
15min in Hanks solution containing
5.6mmol glucose/l in the absence or pres-
ence of 0.1 !g/ml PRL, 10–7mol insulin/l or
the association between both hormones
were immunoprecipitated (IP) with anti-IRS-
2 antibodies and immunoblotted (IB) with
anti-phosphotyrosine antibody (B). The
nitrocellulose membrane transfers were
stripped and probed with anti-IRS-2 (A) and
anti-p85 antibodies (C). The bars represent
the relative protein levels, phosphorylation
of IRS-2 and the binding of p85 as deter-
mined by optical densitometry, and are the
mean 8 SEM of four experiments. *p < 0.05
vs. basal values (c) after a 15min incubation
without PRL and insulin.

Fig. 5 PRL-induced tyrosine phosphorylation of JAK2 in pancreatic is-
let cells. Extracts of islets incubated for 5min and 15min in Hanks so-
lution containing 5.6mmol glucose/l and 2 !g/ml PRL (when required)
were immunoprecipitated (IP) with anti-JAK2 antibody and immuno-
blotted (IB) with anti-JAK2 (A) and anti-phosphotyrosine antibodies
(B). The bars represent the relative protein levels and phosphorylation
of JAK2 as determined by optical densitometry, and are the mean
8 SEM of three experiments. *p < 0.05 vs. basal values (c) after 5min
incubation without PRL.

Amaral MEC et al. Signal Transduction in Pancreatic Islets · Horm Metab Res 2003; 35: 282–289

O
rig

in
alB

asic

286

D
ow

nl
oa

de
d 

by
: I

P
-P

ro
xy

 C
O

N
S

O
R

T
IU

M
:C

A
P

E
S

 (
U

N
IC

A
M

P
 U

ni
ve

rs
id

ad
e 

E
st

ad
ua

l d
e 

C
am

pi
na

s)
, D

ot
. L

ib
 In

fo
rm

at
io

n.
 C

op
yr

ig
ht

ed
 m

at
er

ia
l.



PRL activates SHC and ERK1/2 in neonatal pancreatic islets
In several signaling systems, SHC acts as a docking protein that
participates in the activation of GRB-2/SOS/Ras and transmits
the signal to the nucleus through the MAP kinase cascade. To in-
vestigate the participation of SHC and the MAP kinase cascade in
PRL signaling in neonatal rat pancreatic islets, groups of approxi-
mately 1,500 islets were incubated with 2 Ng/ml PRL for 5 min or
15 min. Islet extracts were either immunoprecipitated with anti-
SHC antibody followed by SDS-PAGE and blotting with anti-
phosphotyrosine antibodies, or were directly separated by SDS-
PAGE, and blotted with anti-phospho-ERK1/2 antibody. PRL in-
creased SHC tyrosine phosphorylation by 3.8-fold after 15 min
compared to the control values (Fig. 6B). Protein levels of SHC
were not different between samples (Fig. 6A). ERK1/2 serine/
threonine kinase phosphorylation increased approximately 3.6-
fold and 6.2-fold after 5 min and 15 min exposure to PRL, respec-
tively (Fig. 7).

Discussion and Conclusions

The activation of JAK/STAT is the major pathway involved in most
of the cellular responses induced by the interaction of GH and
PRL with their respective receptors in different cell types includ-
ing pancreatic B-cells [9,10]. Signal transduction by GH and PRL
also involves tyrosine phosphorylation of IRS proteins [8,34]
with subsequent association/activation of PI 3-kinase. Activation
of the MAP kinase cascade most probably occurs through the
adapter protein complex SHC/GRB-2/SOS [6,7].

In the present report, intracellular crosstalk between the PRL and
insulin-signaling systems was studied in neonatal rat pancreatic
islets. We assessed the quality of the neonatal islet preparations
by determining the insulin secretion response to glucose over-
load and high K+. Insulin secretion was not altered by a 5 min or
15 min exposure of islets to PRL, thus indicating that the action of
PRL on components of the insulin-signaling pathway did not in-
volve insulin. However, exposure to PRL for prolonged period of
time (7 days) strongly potentiated glucose-induced insulin se-
cretion as already shown by many authors [18,26,28]. The PRL
induced potentiation of insulin secretion by glucose was abol-
ished by the concomitant treatment with wortmannin a specific
PI 3-kinase inhibitor, suggesting a participation of this enzyme in
the maturation of the glucose-sensing mechanism provoked by
prolonged treatment with PRL (Fig.1). These data contrast with
the observation that PI 3-kinase exerts a negative regulation of
endocrine differentiation in human fetal cultured islet-like cell
clusters [35]. However, we have to take into account that the tis-
sues used in both experiments were not the same. In another
series of experiments, we observed that both IRS-1 and IRS-2
were tyrosine-phosphorylated in response to physiological
(0.02 and 0.1 Ng/ml) and supraphysiological concentrations
(2 Ng/ml) of PRL for short period of time. Moreover, PI 3-kinase
was also dose-dependently recruited to the IRS-1 and IRS-2 sig-
naling complexes (Fig. 2). The effects of 0.1 Ng/ml PRL on IRS-2
phosphorylation and PI 3-kinase recruitment were not additive
to the insulin (10–7 mol/l) effects as illustrated (Fig. 3). At this
moment, we have no explanation for such an effect. However, it
is conceivable that both hormones compete for p85 subunit of PI

Fig. 7 PRL-induced tyrosine phosphorylation of ERK1/2 in pancreatic
islet cells. Extracts of islets incubated for 5min and 15min in Hanks so-
lution containing 5.6mmol glucose/l and 2 !g/ml PRL (when required)
were immunoblotted (IB) with anti-p-ERK antibody. The bars represent
the relative phosphorylation of p-ERK1/2 as determined by optical den-
sitometry, and are mean 8 SEM of three experiments. *p < 0.05 vs. ba-
sal values (c) after 5min incubation without PRL.

Fig. 6 PRL-induced tyrosine phosphorylation of SHC in pancreatic islet
cells. Extracts of islets incubated for 5min and 15min in Hanks solution
containing 5.6mmol glucose/l and 2 !g/ml PRL (when required) were
immunoprecipitated (IP) with anti-SHC antibody and immunoblotted
(IB) with anti-SHC (A) and anti-phosphotyrosine antibodies (B). The
bars represent the relative protein levels and phosphorylation of SHC
as determined by optical densitometry, and are the mean 8 SEM of
three experiments. *p < 0.05 vs. basal values (c) after 5min incubation
without PRL.

Amaral MEC et al. Signal Transduction in Pancreatic Islets · Horm Metab Res 2003; 35: 282–289

O
rig

in
alB

asic

287

D
ow

nl
oa

de
d 

by
: I

P
-P

ro
xy

 C
O

N
S

O
R

T
IU

M
:C

A
P

E
S

 (
U

N
IC

A
M

P
 U

ni
ve

rs
id

ad
e 

E
st

ad
ua

l d
e 

C
am

pi
na

s)
, D

ot
. L

ib
 In

fo
rm

at
io

n.
 C

op
yr

ig
ht

ed
 m

at
er

ia
l.



3-kinase binding as already demonstrated in other cross-talk
systems [36,37].

In almost all systems tested, association of IRS-1 or IRS-2 with PI
3-kinase induced by hormones, growth factors or cytokines leads
to activation of this kinase. Confirming these data, there was a
significant increase in the activity of PI 3-kinase associated with
IRS-1 (Fig. 4A) and IRS-2 (Fig. 4B). When activated by insulin, PI
3-kinase participates in the control of glucose uptake by muscle
and fat in the control of glycogen and protein synthesis [38] and
in the activation of anti-apoptotic elements [39].

Recent studies in pancreatic islets have shown that PI 3-kinase is
involved in the control of several physiological functions in this
tissue [40,41]. Moreover, insulin secretion induced by high glu-
cose affects insulin and pyruvate kinase gene transcription by
the activating PI 3-kinase [42]. Finally, PI 3-kinase and AKT
activated by IGF-1 exert anti-apoptotic effects in pancreatic islets
[43].

Significant tyrosine phosphorylation of JAK2 was observed
within 5 min of exposure to PRL and maintained for at least
15 min. The intracellular kinases of the JAK family are usually
constitutively associated with several members of the cytokine
receptor superfamily. Accordingly, PRLR possess as JAK2 an asso-
ciated kinase responsible for transducing the initial steps of the
PRL signal. Receptors associated with JAKs deliver a rapid signal
to the nucleus by inducing the activation of members of the sig-
nal transducer and activator of transcription (STAT) family. In
PRL signaling, STAT5 is the isoform involved [24]. The activation
of STAT5 via JAK2 mediates the growth and proliferation of pri-
marily cultures of B-cells though a mechanism that is indepen-
dent of PKC, PI 3-kinase and MAP kinase [44].

In addition to its classic signaling through JAK2, PRL activates the
MAP-kinase cascade through SHC. In neonatal rat pancreatic is-
lets, PRL induced early SHC tyrosine phosphorylation, which
was followed by ERK1/2 phosphorylation. In several signaling
systems, the activation of the MAP-kinase cascade leads to nu-
clear signaling and the control of cellular growth. As shown else-
where [44], B-cell proliferation is not blocked by treatment with
PD98059 or SB203580, inhibitors of different steps of the MAP-
kinase cascade. It is possible that the disrupted architecture of
the pancreatic islets (when working with isolated B-cells) may
influence signaling events and the overall response to a given
pathway of activation. Thus, results obtained in primary cultures
of B-cells and insulin secreting cell lines may be not fully applic-
able to in situ or isolated islets. Another possibility is that the
SHC/MAPK pathway, once activated by PRL in pancreatic islets
may be involved in other cellular functions such as growth,
apoptosis, morphogenesis, and cell repair [45].

Autocrine signaling of insulin apparently participates in the con-
trol of several functions that are important for islet homeostasis.
As shown here, PRL, a hormone present at high concentrations
during late embryonic and early extrauterine life, signals
through elements classically involved in insulin signaling. No
regulation of insulin secretion by PRL for short period of time
was detected, but the activation of the IRS-1/-2 and PI 3-kinase

pathway by PRL may be involved in morphogenesis, cell growth
or ontogenetic apoptosis in pancreatic islets.
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