114 research outputs found

    Cosmic microwave background and parametric resonance in reheating

    Get PDF
    The variation of the perturbative 3-curvature parameter, \zeta, is investigated in the period of reheating after inflation. The two-field model used has the inflaton, with an extra scalar field coupled to it, and non-linear effects of both fields are included as well as a slow decay mechanism into the hydrodynamic fluid of the radiation era. Changes in \zeta occur and persist into the succeeding cosmic eras to influence the generation of the cosmic microwave background fluctuations.Comment: 21 pages, 6 figures.Corrects misprinted formula and 2 number

    Fluctuations in the Cosmic Microwave Background I: Form Factors and their Calculation in Synchronous Gauge

    Get PDF
    It is shown that the fluctuation in the temperature of the cosmic microwave background in any direction may be evaluated as an integral involving scalar and dipole form factors, which incorporate all relevant information about acoustic oscillations before the time of last scattering. A companion paper gives asymptotic expressions for the multipole coefficient Câ„“C_\ell in terms of these form factors. Explicit expressions are given here for the form factors in a simplified hydrodynamic model for the evolution of perturbations.Comment: 35 pages, no figures. Improved treatment of damping, including both Landau and Silk damping; inclusion of late-time effects; several references added; minor changes and corrections made. Accepted for publication in Phys. Rev. D1

    First-order quasilinear canonical representation of the characteristic formulation of the Einstein equations

    Full text link
    We prescribe a choice of 18 variables in all that casts the equations of the fully nonlinear characteristic formulation of general relativity in first--order quasi-linear canonical form. At the analytical level, a formulation of this type allows us to make concrete statements about existence of solutions. In addition, it offers concrete advantages for numerical applications as it now becomes possible to incorporate advanced numerical techniques for first order systems, which had thus far not been applicable to the characteristic problem of the Einstein equations, as well as in providing a framework for a unified treatment of the vacuum and matter problems. This is of relevance to the accurate simulation of gravitational waves emitted in astrophysical scenarios such as stellar core collapse.Comment: revtex4, 7 pages, text and references added, typos corrected, to appear in Phys. Rev.

    The Sachs-Wolfe Effect: Gauge Independence and a General Expression

    Full text link
    In this paper we address two points concerning the Sachs-Wolfe effect: (i) the gauge independence of the observable temperature anisotropy, and (ii) a gauge-invariant expression of the effect considering the most general situation of hydrodynamic perturbations. The first result follows because the gauge transformation of the temperature fluctuation at the observation event only contributes to the isotropic temperature change which, in practice, is absorbed into the definition of the background temperature. Thus, we proceed without fixing the gauge condition, and express the Sachs-Wolfe effect using the gauge-invariant variables.Comment: 5 pages, closer to published versio

    Inflationary Perturbations: the Cosmological Schwinger Effect

    Full text link
    This pedagogical review aims at presenting the fundamental aspects of the theory of inflationary cosmological perturbations of quantum-mechanical origin. The analogy with the well-known Schwinger effect is discussed in detail and a systematic comparison of the two physical phenomena is carried out. In particular, it is demonstrated that the two underlying formalisms differ only up to an irrelevant canonical transformation. Hence, the basic physical mechanisms at play are similar in both cases and can be reduced to the quantization of a parametric oscillator leading to particle creation due to the interaction with a classical source: pair production in vacuum is therefore equivalent to the appearance of a growing mode for the cosmological fluctuations. The only difference lies in the nature of the source: an electric field in the case of the Schwinger effect and the gravitational field in the case of inflationary perturbations. Although, in the laboratory, it is notoriously difficult to produce an electric field such that pairs extracted from the vacuum can be detected, the gravitational field in the early universe can be strong enough to lead to observable effects that ultimately reveal themselves as temperature fluctuations in the Cosmic Microwave Background. Finally, the question of how quantum cosmological perturbations can be considered as classical is discussed at the end of the article.Comment: 49 pages, 6 figures, to appear in a LNP volume "Inflationary Cosmology

    First Measurement of Z/gamma* Production in Compton Scattering of Quasi-real Photons

    Full text link
    We report the first observation of Z/gamma* production in Compton scattering of quasi-real photons. This is a subprocess of the reaction e+e- to e+e-Z/gamma*, where one of the final state electrons is undetected. Approximately 55 pb-1 of data collected in the year 1997 at an e+e- centre-of-mass energy of 183 GeV with the OPAL detector at LEP have been analysed. The Z/gamma* from Compton scattering has been detected in the hadronic decay channel. Within well defined kinematic bounds, we measure the product of cross-section and Z/gamma* branching ratio to hadrons to be (0.9+-0.3+-0.1) pb for events with a hadronic mass larger than 60 GeV, dominated by (e)eZ production. In the hadronic mass region between 5 GeV and 60 GeV, dominated by (e)egamma* production, this product is found to be (4.1+-1.6+-0.6) pb. Our results agree with the predictions of two Monte Carlo event generators, grc4f and PYTHIA.Comment: 18 pages, LaTeX, 5 eps figures included, submitted to Physics Letters

    Measurement of the Michel Parameters in Leptonic Tau Decays

    Get PDF
    The Michel parameters of the leptonic tau decays are measured using the OPAL detector at LEP. The Michel parameters are extracted from the energy spectra of the charged decay leptons and from their energy-energy correlations. A new method involving a global likelihood fit of Monte Carlo generated events with complete detector simulation and background treatment has been applied to the data recorded at center-of-mass energies close to sqrt(s) = M(Z) corresponding to an integrated luminosity of 155 pb-1 during the years 1990 to 1995. If e-mu universality is assumed and inferring the tau polarization from neutral current data, the measured Michel parameters are extracted. Limits on non-standard coupling constants and on the masses of new gauge bosons are obtained. The results are in agreement with the V-A prediction of the Standard Model.Comment: 32 pages, LaTeX, 9 eps figures included, submitted to the European Physical Journal

    Human macrophages differentiated in the presence of vitamin D3 restrict dengue virus infection and innate responses by downregulating mannose receptor expression

    Get PDF
    ABSTARCT: Severe dengue disease is associated with high viral loads and overproduction of pro-inflammatory cytokines, suggesting impairment in the control of dengue virus (DENV) and the mechanisms that regulate cytokine production. Vitamin D3 has been described as an important modulator of immune responses to several pathogens. Interestingly, increasing evidence has associated vitamin D with decreased DENV infection and early disease recovery, yet the molecular mechanisms whereby vitamin D reduces DENV infection are not well understood. METHODS AND PRINCIPAL FINDINGS: Macrophages represent important cell targets for DENV replication and consequently, they are key drivers of dengue disease. In this study we evaluated the effect of vitamin D3 on the differentiation of monocyte-derived macrophages (MDM) and their susceptibility and cytokine response to DENV. Our data demonstrate that MDM differentiated in the presence of vitamin D3 (D3-MDM) restrict DENV infection and moderate the classical inflammatory cytokine response. Mechanistically, vitamin D3-driven differentiation led to reduced surface expression of C-type lectins including the mannose receptor (MR, CD206) that is known to act as primary receptor for DENV attachment on macrophages and to trigger of immune signaling. Consequently, DENV bound less efficiently to vitamin D3-differentiated macrophages, leading to lower infection. Interestingly, IL-4 enhanced infection was reduced in D3-MDM by restriction of MR expression. Moreover, we detected moderate secretion of TNF-α, IL-1β, and IL-10 in D3-MDM, likely due to less MR engagement during DENV infection. CONCLUSIONS/SIGNIFICANCE: Our findings reveal a molecular mechanism by which vitamin D counteracts DENV infection and progression of severe disease, and indicates its potential relevance as a preventive or therapeutic candidate

    Inclusive production of charged hadrons and Ks0K_{s}^{0} mesons in photon-photon collisions

    Get PDF
    The production of charged hadrons and K_s mesons in the collisions of quasi-real photons has been measured using the OPAL detector at LEP. The data were taken at e+e- centre-of-mass energies of 161 and 172 GeV. The differential cross-sections as a function of the transverse momentum and the pseudorapidity of the charged hadrons and K_s mesons have been compared to the leading order Monte Carlo simulations of PHOJET and PYTHIA and to perturbative next-to-leading order (NLO) QCD calculations. The distributions have been measured in the range 10-125 GeV of the hadronic invariant mass W. By comparing the transverse momentum distribution of charged hadrons measured in gamma-gamma interactions with gamma-proton and meson-proton data we find evidence for hard photon interactions in addition to the purely hadronic photon interactions.The production of charged hadrons and K_s mesons in the collisions of quasi-real photons has been measured using the OPAL detector at LEP. The data were taken at e+e- centre-of-mass energies of 161 and 172 GeV. The differential cross-sections as a function of the transverse momentum and the pseudorapidity of the charged hadrons and K_s mesons have been compared to the leading order Monte Carlo simulations of PHOJET and PYTHIA and to perturbative next-to-leading order (NLO) QCD calculations. The distributions have been measured in the range 10-125 GeV of the hadronic invariant mass W. By comparing the transverse momentum distribution of charged hadrons measured in gamma-gamma interactions with gamma-proton and meson-proton data we find evidence for hard photon interactions in addition to the purely hadronic photon interactions

    A search for neutral Higgs bosons in the MSSM and models with two scalar field doublets

    Get PDF
    A search is described for the neutral Higgs bosons h^0 and A^0 predicted by models with two scalar field doublets and, in particular, the Minimal Supersymmetric Standard Model (MSSM). The search in the Z^0 h^0 and h^0 A^0 production channels is based on data corresponding to an integrated luminosity of 25 pb^{-1} from e^+e^- collisions at centre-of-mass energies between 130 and 172GeV collected with the OPAL detector at LEP. The observation of a number of candidates consistent with Standard Model background expectations is used in combination with earlier results from data collected at the Z^0 resonance to set limits on m_h and m_A in general models with two scalar field doublets and in the MSSM. For example, in the MSSM, for tan(beta) > 1, minimal and maximal scalar top quark mixing and soft SUSY-breaking masses of 1 TeV, the 95% confidence level limits m_h > 59.0 GeV and m_A > 59.5 GeV are obtained. For the first time, the MSSM parameter space is explored in a detailed scan.A search is described for the neutral Higgs bosons h^0 and A^0 predicted by models with two scalar field doublets and, in particular, the Minimal Supersymmetric Standard Model (MSSM). The search in the Z^0 h^0 and h^0 A^0 production channels is based on data corresponding to an integrated luminosity of 25 pb^{-1} from e^+e^- collisions at centre-of-mass energies between 130 and 172 GeV collected with the OPAL detector at LEP. The observation of a number of candidates consistent with Standard Model background expectations is used in combination with earlier results from data collected at the Z^0 resonance to set limits on m_h and m_A in general models with two scalar field doublets and in the MSSM. For example, in the MSSM, for tan(beta) > 1, minimal and maximal scalar top quark mixing and soft SUSY-breaking masses of 1 TeV, the 95% confidence level limits m_h > 59.0 GeV and m_A > 59.5 GeV are obtained. For the first time, the MSSM parameter space is explored in a detailed scan
    • …
    corecore