158 research outputs found
Regularity estimates for the solution and the free boundary to the obstacle problem for the fractional Laplacian
We use a characterization of the fractional Laplacian as a Dirichlet to
Neumann operator for an appropriate differential equation to study its obstacle
problem. We write an equivalent characterization as a thin obstacle problem. In
this way we are able to apply local type arguments to obtain sharp regularity
estimates for the solution and study the regularity of the free boundary
Nonlinear porous medium flow with fractional potential pressure
We study a porous medium equation, with nonlocal diffusion effects given by
an inverse fractional Laplacian operator. We pose the problem in n-dimensional
space for all t>0 with bounded and compactly supported initial data, and prove
existence of a weak and bounded solution that propagates with finite speed, a
property that is nor shared by other fractional diffusion models.Comment: 32 pages, Late
Global estimates for solutions to the linearized Monge--Amp\`ere equations
In this paper, we establish global estimates for solutions to the
linearized Monge-Amp\`ere equations under natural assumptions on the domain,
Monge-Amp\`ere measures and boundary data. Our estimates are affine invariant
analogues of the global estimates of Winter for fully nonlinear,
uniformly elliptic equations, and also linearized counterparts of Savin's
global estimates for the Monge-Amp\`ere equations.Comment: v2: presentation improve
Geometric approach to nonvariational singular elliptic equations
In this work we develop a systematic geometric approach to study fully
nonlinear elliptic equations with singular absorption terms as well as their
related free boundary problems. The magnitude of the singularity is measured by
a negative parameter , for , which reflects on
lack of smoothness for an existing solution along the singular interface
between its positive and zero phases. We establish existence as well sharp
regularity properties of solutions. We further prove that minimal solutions are
non-degenerate and obtain fine geometric-measure properties of the free
boundary . In particular we show sharp
Hausdorff estimates which imply local finiteness of the perimeter of the region
and a.e. weak differentiability property of
.Comment: Paper from D. Araujo's Ph.D. thesis, distinguished at the 2013 Carlos
Gutierrez prize for best thesis, Archive for Rational Mechanics and Analysis
201
Partial Schauder estimates for second-order elliptic and parabolic equations
We establish Schauder estimates for both divergence and non-divergence form
second-order elliptic and parabolic equations involving H\"older semi-norms not
with respect to all, but only with respect to some of the independent
variables.Comment: CVPDE, accepted (2010)
Remarks on the KLS conjecture and Hardy-type inequalities
We generalize the classical Hardy and Faber-Krahn inequalities to arbitrary
functions on a convex body , not necessarily
vanishing on the boundary . This reduces the study of the
Neumann Poincar\'e constant on to that of the cone and Lebesgue
measures on ; these may be bounded via the curvature of
. A second reduction is obtained to the class of harmonic
functions on . We also study the relation between the Poincar\'e
constant of a log-concave measure and its associated K. Ball body
. In particular, we obtain a simple proof of a conjecture of
Kannan--Lov\'asz--Simonovits for unit-balls of , originally due to
Sodin and Lata{\l}a--Wojtaszczyk.Comment: 18 pages. Numbering of propositions, theorems, etc.. as appeared in
final form in GAFA seminar note
Stability of flows associated to gradient vector fields and convergence of iterated transport maps
In this paper we address the problem of stability of flows
associated to a sequence of vector fields under minimal regularity requirements
on the limit vector field, that is supposed to be a gradient. We apply this
stability result to show the convergence of iterated compositions of optimal
transport maps arising in the implicit time discretization (with respect to the
Wasserstein distance) of nonlinear evolution equations of a diffusion type.
Finally, we use these convergence results to study the gradient flow of a
particular class of polyconvex functionals recently considered by Gangbo, Evans
ans Savin. We solve some open problems raised in their paper and obtain
existence and uniqueness of solutions under weaker regularity requirements and
with no upper bound on the jacobian determinant of the initial datum
H^s versus C^0-weighted minimizers
We study a class of semi-linear problems involving the fractional Laplacian
under subcritical or critical growth assumptions. We prove that, for the
corresponding functional, local minimizers with respect to a C^0-topology
weighted with a suitable power of the distance from the boundary are actually
local minimizers in the natural H^s-topology.Comment: 15 page
Singular solutions of fully nonlinear elliptic equations and applications
We study the properties of solutions of fully nonlinear, positively
homogeneous elliptic equations near boundary points of Lipschitz domains at
which the solution may be singular. We show that these equations have two
positive solutions in each cone of , and the solutions are unique
in an appropriate sense. We introduce a new method for analyzing the behavior
of solutions near certain Lipschitz boundary points, which permits us to
classify isolated boundary singularities of solutions which are bounded from
either above or below. We also obtain a sharp Phragm\'en-Lindel\"of result as
well as a principle of positive singularities in certain Lipschitz domains.Comment: 41 pages, 2 figure
On the Regularity of Optimal Transportation Potentials on Round Spheres
In this paper the regularity of optimal transportation potentials defined on
round spheres is investigated. Specifically, this research generalises the
calculations done by Loeper, where he showed that the strong (A3) condition of
Trudinger and Wang is satisfied on the round sphere, when the cost-function is
the geodesic distance squared. In order to generalise Loeper's calculation to a
broader class of cost-functions, the (A3) condition is reformulated via a
stereographic projection that maps charts of the sphere into Euclidean space.
This reformulation subsequently allows one to verify the (A3) condition for any
case where the cost-fuction of the associated optimal transportation problem
can be expressed as a function of the geodesic distance between points on a
round sphere. With this, several examples of such cost-functions are then
analysed to see whether or not they satisfy this (A3) condition.Comment: 24 pages, 4 figure
- …
