158 research outputs found

    Regularity estimates for the solution and the free boundary to the obstacle problem for the fractional Laplacian

    Full text link
    We use a characterization of the fractional Laplacian as a Dirichlet to Neumann operator for an appropriate differential equation to study its obstacle problem. We write an equivalent characterization as a thin obstacle problem. In this way we are able to apply local type arguments to obtain sharp regularity estimates for the solution and study the regularity of the free boundary

    Nonlinear porous medium flow with fractional potential pressure

    Full text link
    We study a porous medium equation, with nonlocal diffusion effects given by an inverse fractional Laplacian operator. We pose the problem in n-dimensional space for all t>0 with bounded and compactly supported initial data, and prove existence of a weak and bounded solution that propagates with finite speed, a property that is nor shared by other fractional diffusion models.Comment: 32 pages, Late

    Global W2,pW^{2,p} estimates for solutions to the linearized Monge--Amp\`ere equations

    Full text link
    In this paper, we establish global W2,pW^{2,p} estimates for solutions to the linearized Monge-Amp\`ere equations under natural assumptions on the domain, Monge-Amp\`ere measures and boundary data. Our estimates are affine invariant analogues of the global W2,pW^{2,p} estimates of Winter for fully nonlinear, uniformly elliptic equations, and also linearized counterparts of Savin's global W2,pW^{2,p} estimates for the Monge-Amp\`ere equations.Comment: v2: presentation improve

    Geometric approach to nonvariational singular elliptic equations

    Full text link
    In this work we develop a systematic geometric approach to study fully nonlinear elliptic equations with singular absorption terms as well as their related free boundary problems. The magnitude of the singularity is measured by a negative parameter (γ1)(\gamma -1), for 0<γ<10 < \gamma < 1, which reflects on lack of smoothness for an existing solution along the singular interface between its positive and zero phases. We establish existence as well sharp regularity properties of solutions. We further prove that minimal solutions are non-degenerate and obtain fine geometric-measure properties of the free boundary F={u>0}\mathfrak{F} = \partial \{u > 0 \}. In particular we show sharp Hausdorff estimates which imply local finiteness of the perimeter of the region {u>0}\{u > 0 \} and Hn1\mathcal{H}^{n-1} a.e. weak differentiability property of F\mathfrak{F}.Comment: Paper from D. Araujo's Ph.D. thesis, distinguished at the 2013 Carlos Gutierrez prize for best thesis, Archive for Rational Mechanics and Analysis 201

    Partial Schauder estimates for second-order elliptic and parabolic equations

    Full text link
    We establish Schauder estimates for both divergence and non-divergence form second-order elliptic and parabolic equations involving H\"older semi-norms not with respect to all, but only with respect to some of the independent variables.Comment: CVPDE, accepted (2010)

    Remarks on the KLS conjecture and Hardy-type inequalities

    Full text link
    We generalize the classical Hardy and Faber-Krahn inequalities to arbitrary functions on a convex body ΩRn\Omega \subset \mathbb{R}^n, not necessarily vanishing on the boundary Ω\partial \Omega. This reduces the study of the Neumann Poincar\'e constant on Ω\Omega to that of the cone and Lebesgue measures on Ω\partial \Omega; these may be bounded via the curvature of Ω\partial \Omega. A second reduction is obtained to the class of harmonic functions on Ω\Omega. We also study the relation between the Poincar\'e constant of a log-concave measure μ\mu and its associated K. Ball body KμK_\mu. In particular, we obtain a simple proof of a conjecture of Kannan--Lov\'asz--Simonovits for unit-balls of pn\ell^n_p, originally due to Sodin and Lata{\l}a--Wojtaszczyk.Comment: 18 pages. Numbering of propositions, theorems, etc.. as appeared in final form in GAFA seminar note

    Stability of flows associated to gradient vector fields and convergence of iterated transport maps

    Get PDF
    In this paper we address the problem of stability of flows associated to a sequence of vector fields under minimal regularity requirements on the limit vector field, that is supposed to be a gradient. We apply this stability result to show the convergence of iterated compositions of optimal transport maps arising in the implicit time discretization (with respect to the Wasserstein distance) of nonlinear evolution equations of a diffusion type. Finally, we use these convergence results to study the gradient flow of a particular class of polyconvex functionals recently considered by Gangbo, Evans ans Savin. We solve some open problems raised in their paper and obtain existence and uniqueness of solutions under weaker regularity requirements and with no upper bound on the jacobian determinant of the initial datum

    H^s versus C^0-weighted minimizers

    Full text link
    We study a class of semi-linear problems involving the fractional Laplacian under subcritical or critical growth assumptions. We prove that, for the corresponding functional, local minimizers with respect to a C^0-topology weighted with a suitable power of the distance from the boundary are actually local minimizers in the natural H^s-topology.Comment: 15 page

    Singular solutions of fully nonlinear elliptic equations and applications

    Full text link
    We study the properties of solutions of fully nonlinear, positively homogeneous elliptic equations near boundary points of Lipschitz domains at which the solution may be singular. We show that these equations have two positive solutions in each cone of Rn\mathbb{R}^n, and the solutions are unique in an appropriate sense. We introduce a new method for analyzing the behavior of solutions near certain Lipschitz boundary points, which permits us to classify isolated boundary singularities of solutions which are bounded from either above or below. We also obtain a sharp Phragm\'en-Lindel\"of result as well as a principle of positive singularities in certain Lipschitz domains.Comment: 41 pages, 2 figure

    On the Regularity of Optimal Transportation Potentials on Round Spheres

    Full text link
    In this paper the regularity of optimal transportation potentials defined on round spheres is investigated. Specifically, this research generalises the calculations done by Loeper, where he showed that the strong (A3) condition of Trudinger and Wang is satisfied on the round sphere, when the cost-function is the geodesic distance squared. In order to generalise Loeper's calculation to a broader class of cost-functions, the (A3) condition is reformulated via a stereographic projection that maps charts of the sphere into Euclidean space. This reformulation subsequently allows one to verify the (A3) condition for any case where the cost-fuction of the associated optimal transportation problem can be expressed as a function of the geodesic distance between points on a round sphere. With this, several examples of such cost-functions are then analysed to see whether or not they satisfy this (A3) condition.Comment: 24 pages, 4 figure
    corecore