10,312 research outputs found

    Compact and Broadband Microstrip-Line-Fed Modified Rhombus Slot Antenna

    Get PDF
    The printed microstrip-line-fed broadband rhombus slot antenna is investigated in this paper. With the use of the offset microstrip feed line and the corner-truncated protruded ground plane, the bandwidth enhancement and the slot size reduction for the proposed slot antenna can be obtained. The experimental results demonstrate that the impedance bandwidth for 10 dB return loss reaches 5210 MHz (108.2%, 2210-7420 MHz), which is about 2.67 times of a conventional microstrip-line-fed rhombus slot antenna. This bandwidth can provide with the wireless communication services operating in wireless local area network (WLAN) and worldwide interoperability for microwave access (WiMAX) bands. Under the use of the protruded ground plane, the slot size can be reduced by about 52%. Details of simulated and measured results are presented and discussed

    On the renormalized scalar density in quenched QCD

    Full text link
    We present a non-perturbative determination of the renormalization factor Z_S of the scalar density in quenched QCD with overlap fermions. Results are obtained at four values of the lattice spacing. By combining Z_S with results for the low-energy constant Sigma we are able to compute the renormalization group invariant scalar condensate in the continuum limit with a total accuracy of 7%, excluding dynamical quark effects. Our result translates to Sigma_msbar(2 GeV)=(285+/-9 MeV)^3 if the scale is set by the kaon decay constant. We have also performed scaling studies of the pseudoscalar decay constant and the vector mass. Our results indicate that quantities computed using overlap quarks exhibit excellent scaling behaviour, with small residual lattice artifacts.Comment: 15 pages, 7 figure

    Design of hardware accelerators for demanding applications.

    Get PDF
    This paper focuses on mastering the architecture development of hardware accelerators. It presents the results of our analysis of the main issues that have to be addressed when designing accelerators for modern demanding applications, when using as an example the accelerator design for LDPC decoding for the newest demanding communication system standards. Based on the results of our analysis, we formulate the main requirements that have to be satisfied by an adequate accelerator design methodology, and propose a design approach which satisfies these requirements

    CABAC accelerator architectures for video compression in future multimedida : a survey

    Get PDF
    The demands for high quality, real-time performance and multi-format video support in consumer multimedia products are ever increasing. In particular, the future multimedia systems require efficient video coding algorithms and corresponding adaptive high-performance computational platforms. The H.264/AVC video coding algorithms provide high enough compression efficiency to be utilized in these systems, and multimedia processors are able to provide the required adaptability, but the algorithms complexity demands for more efficient computing platforms. Heterogeneous (re-)configurable systems composed of multimedia processors and hardware accelerators constitute the main part of such platforms. In this paper, we survey the hardware accelerator architectures for Context-based Adaptive Binary Arithmetic Coding (CABAC) of Main and High profiles of H.264/AVC. The purpose of the survey is to deliver a critical insight in the proposed solutions, and this way facilitate further research on accelerator architectures, architecture development methods and supporting EDA tools. The architectures are analyzed, classified and compared based on the core hardware acceleration concepts, algorithmic characteristics, video resolution support and performance parameters, and some promising design directions are discussed. The comparative analysis shows that the parallel pipeline accelerator architecture seems to be the most promising

    Survey of advanced CABAC accelarator architectures for future multimedia.

    Get PDF
    The future high quality multimedia systems require efficient video coding algorithms and corresponding adaptive high-performance computational platforms. In this paper, we survey the hardware accelerator architectures for Context-based Adaptive Binary Arithmetic Coding (CABAC) of H.264/AVC. The purpose of the survey is to deliver a critical insight in the proposed solutions, and this way facilitate further research on accelerator architectures, architecture development methods and supporting EDA tools. The architectures are analyzed, classified and compared based on the core hardware acceleration concepts, algorithmic characteristics, video resolution support and performance parameters, and some promising design directions are discussed

    Ionization of clusters in strong X-ray laser pulses

    Get PDF
    The effect of intense X-ray laser interaction on argon clusters is studied theoretically with a mixed quantum/classical approach. In comparison to a single atom we find that ionization of the cluster is suppressed, which is in striking contrast to the observed behavior of rare-gas clusters in intense optical laser pulses. We have identified two effects responsible for this phenomenon: A high space charge of the cluster in combination with a small quiver amplitude and delocalization of electrons in the cluster. We elucidate their impact for different field strengths and cluster sizes.Comment: 4 pages, 4 figure

    Flexible Pension Take-up in Social Security

    Get PDF
    This paper studies the redistribution and welfare effects of increasing the flexibility of individual pension take-up. We use an overlapping-generations model with Beveridgean pay-as-you-go pensions, where individuals differ in ability and life span. We find that introducing flexible pension take-up can induce a Pareto improvement when the initial pension scheme contains within-cohort redistribution and induces early retirement. Such a Pareto-improving reform entails the application of uniform actuarial adjustment of pension entitlements based on average life expectancy. Introducing actuarial non-neutrality that stimulates later retirement further improves such a flexibility reform

    Retirement Flexibility and Portfolio Choice in General Equilibrium

    Get PDF
    This paper explores the interaction between retirement flexibility and portfolio choice in an overlapping-generations model of a closed economy. Retirement flexibility is often seen as a hedge against capital market risks which justifies more risky asset portfolios. We show, however, that this positive relationship between risk taking and retirement flexibility is weakened - and under some conditions even turned around - if not only capital market risks but also productivity risks are considered. Productivity risk in combination with a high elasticity of substitution between consumption and leisure creates a positive correlation between asset returns and labour income, reducing the willingness of consumers to bear risk. Moreover, it turns out that general equilibrium effects can either increase or decrease the equity exposure, depending on the degree of substitutability between consumption and leisure

    Distribution theory for Schr\"odinger's integral equation

    Get PDF
    Much of the literature on point interactions in quantum mechanics has focused on the differential form of Schr\"odinger's equation. This paper, in contrast, investigates the integral form of Schr\"odinger's equation. While both forms are known to be equivalent for smooth potentials, this is not true for distributional potentials. Here, we assume that the potential is given by a distribution defined on the space of discontinuous test functions. First, by using Schr\"odinger's integral equation, we confirm a seminal result by Kurasov, which was originally obtained in the context of Schr\"odinger's differential equation. This hints at a possible deeper connection between both forms of the equation. We also sketch a generalisation of Kurasov's result to hypersurfaces. Second, we derive a new closed-form solution to Schr\"odinger's integral equation with a delta prime potential. This potential has attracted considerable attention, including some controversy. Interestingly, the derived propagator satisfies boundary conditions that were previously derived using Schr\"odinger's differential equation. Third, we derive boundary conditions for `super-singular' potentials given by higher-order derivatives of the delta potential. These boundary conditions cannot be incorporated into the normal framework of self-adjoint extensions. We show that the boundary conditions depend on the energy of the solution, and that probability is conserved. This paper thereby confirms several seminal results and derives some new ones. In sum, it shows that Schr\"odinger's integral equation is viable tool for studying singular interactions in quantum mechanics.Comment: 23 page

    Effect of microstructures on the electron-phonon interaction in the disordered metals Pd60_{60}Ag40_{40}

    Full text link
    Using the weak-localization method, we have measured the electron-phonon scattering times τep\tau_{ep} in Pd60_{60}Ag40_{40} thick films prepared by DC- and RF-sputtering deposition techniques. In both series of samples, we find an anomalous 1/τepT21/\tau_{ep} \propto T^2\ell temperature and disorder dependence, where \ell is the electron elastic mean free path. This anomalous behavior cannot be explained in terms of the current concepts for the electron-phonon interaction in impure conductors. Our result also reveals that the strength of the electron-phonon coupling is much stronger in the DC than RF sputtered films, suggesting that the electron-phonon interaction not only is sensitive to the total level of disorder but also is sensitive to the microscopic quality of the disorder.Comment: accepted for publication in Phys. Rev.
    corecore