18 research outputs found
Diarylquinolines are bactericidal for dormant mycobacteria as a result of disturbed ATP homeostasis.
An estimated one-third of the world population is latently infected with Mycobacterium tuberculosis. These nonreplicating, dormant bacilli are tolerant to conventional anti-tuberculosis drugs, such as isoniazid. We recently identified diarylquinoline R207910 (also called TMC207) as an inhibitor of ATP synthase with a remarkable activity against replicating mycobacteria. In the present study, we show that R207910 kills dormant bacilli as effectively as aerobically grown bacilli with the same target specificity. Despite a transcriptional down-regulation of the ATP synthase operon and significantly lower cellular ATP levels, we show that dormant mycobacteria do possess residual ATP synthase enzymatic activity. This activity is blocked by nanomolar concentrations of R207910, thereby further reducing ATP levels and causing a pronounced bactericidal effect. We conclude that this residual ATP synthase activity is indispensable for the survival of dormant mycobacteria, making it a promising drug target to tackle dormant infections. The unique dual bactericidal activity of diarylquinolines on dormant as well as replicating bacterial subpopulations distinguishes them entirely from the current anti-tuberculosis drugs and underlines the potential of R207910 to shorten tuberculosis treatment. © 2008 by The American Society for Biochemistry and Molecular Biology, Inc
Connexin hemichannel inhibition reduces acetaminophen-induced liver injury in mice
Historically, connexin hemichannels have been considered as structural precursors of gap junctions. However, accumulating evidence points to independent roles for connexin hemichannels in cellular signaling by connecting the intracellular compartment with the extracellular environment. Unlike gap junctions, connexin hemichannels seem to be mainly activated in pathological processes. The present study was set up to test the potential involvement of hemichannels composed of connexin32 and connexin43 in acute hepatotoxicity induced by acetaminophen. Prior to this, in vitro testing was performed to confirm the specificity and efficacy of TAT-Gap24 and TAT-Gap19 in blocking connexin32 and connexin43 hemichannels, respectively. Subsequently, mice were overdosed with acetaminophen followed by treatment with TAT-Gap24 or TAT-Gap19 or a combination of both after 1.5h. Sampling was performed 3, 6, 24 and 48h following acetaminophen administration. Evaluation of the effects of connexin hemichannel inhibition was based on a series of clinically relevant read-outs, measurement of inflammatory cytokines and oxidative stress. Subsequent treatment of acetaminophen-overdosed mice with TAT-Gap19 only marginally affected liver injury. In contrast, a significant reduction in serum alanine aminotransferase activity was found upon administration of TAT-Gap24 to intoxicated animals. Furthermore, co-treatment of acetaminophen-overdosed mice with both peptides revealed an additive effect as even lower serum alanine aminotransferase activity was observed. Blocking of connexin32 or connexin43 hemichannels individually was found to decrease serum quantities of pro-inflammatory cytokines, while no effects were observed on the occurrence of hepatic oxidative stress. This study shows for the first time a role for connexin hemichannels in acetaminophen-induced acute liver failure
Inhibition of pannexin1 channels alleviates acetaminophen-induced hepatotoxicity
© 2016, Springer-Verlag Berlin Heidelberg. Pannexins constitute a relatively new family of transmembrane proteins that form channels linking the cytoplasmic compartment with the extracellular environment. The presence of pannexin1 in the liver has been documented previously, where it underlies inflammatory responses, such as those occurring upon ischemia–reperfusion injury. In the present study, we investigated whether pannexin1 plays a role in acute drug-induced liver toxicity. Hepatic expression of pannexin1 was characterized in a mouse model of acetaminophen-induced hepatotoxicity. Subsequently, mice were overdosed with acetaminophen followed by treatment with the pannexin1 channel inhibitor 10Panx1. Sampling was performed 1, 3, 6, 24 and 48 h after acetaminophen administration. Evaluation of the effects of pannexin1 channel inhibition was based on a number of clinically relevant readouts, including protein adduct formation, measurement of aminotransferase activity and histopathological examination of liver tissue as well as on a series of markers of inflammation, oxidative stress and regeneration. Although no significant differences were found in histopathological analysis, pannexin1 channel inhibition reduced serum levels of alanine and aspartate aminotransferase. This was paralleled by a reduced amount of neutrophils recruited to the liver. Furthermore, alterations in the oxidized status were noticed with upregulation of glutathione levels upon suppression of pannexin1 channel opening. Concomitant promotion of regenerative activity was detected as judged on increased proliferating cell nuclear antigen protein quantities in 10Panx1-treated mice. Pannexin1 channels are important actors in liver injury triggered by acetaminophen. Inhibition of pannexin1 channel opening could represent a novel approach for the treatment of drug-induced hepatotoxicity
Erratum to: Inhibition of pannexin1 channels alleviates acetaminophen-induced hepatotoxicity (Archives of Toxicology, (2017), 91, 5, (2245-2261), 10.1007/s00204-016-1885-6)
© 2017, Springer-Verlag Berlin Heidelberg. In the original version, the left picture in the lower panel in Fig. 2b was accidentally duplicated on the right side. The correct picture is the following
Binding of a potent small-molecule inhibitor of six-helix bundle formation requires interactions with both heptad-repeats of the RSV fusion protein
Six-helix bundle (6HB) formation is an essential step for many viruses that rely on a class I fusion protein to enter a target cell and initiate replication. Because the binding modes of small molecule inhibitors of 6HB formation are largely unknown, precisely how they disrupt 6HB formation remains unclear, and structure-based design of improved inhibitors is thus seriously hampered. Here we present the high resolution crystal structure of TMC353121, a potent inhibitor of respiratory syncytial virus (RSV), bound at a hydrophobic pocket of the 6HB formed by amino acid residues from both HR1 and HR2 heptad-repeats. Binding of TMC353121 stabilizes the interaction of HR1 and HR2 in an alternate conformation of the 6HB, in which direct binding interactions are formed between TMC353121 and both HR1 and HR2. Rather than completely preventing 6HB formation, our data indicate that TMC353121 inhibits fusion by causing a local disturbance of the natural 6HB conformation