264 research outputs found

    Branching in Electrospinning of Nanofibers

    Get PDF
    Electrospinning of polymer nanofibers often begins with a single, straight, elongating, and electrified fluid jet that emanates from a droplet tip when the electric field at the surface is high enough. After some distance an electrically driven bending instability of the elongating jet occurs. For a polymer solution suitable for electrospinning, capillary instability does not cause the jet to become a spray of droplets. Under some conditions, a sequence of secondary jet branches emanates from the primary jet. This paper describes an experiment in which many closely spaced branches along the jet were observed during the electrospinning of a polycaprolactone solution. A theoretical description of the branching phenomenon is proposed. (c) 2005 American Institute of Physics

    BaFe12O19 single-particle-chain nanofibers : preparation, characterization, formation principle, and magnetization reversal mechanism

    Get PDF
    BaFe12O19 single-particle-chain nanofibers have been successfully prepared by an electrospinning method and calcination process, and their morphology, chemistry, and crystal structure have been characterized at the nanoscale. It is found that individual BaFe12O19 nanofibers consist of single nanoparticles which are found to stack along the nanofiber axis. The chemical analysis shows that the atomic ratio of Ba/Fe is 1:12, suggesting a BaFe12O19 composition. The crystal structure of the BaFe12O19 single-particle-chain nanofibers is proved to be M-type hexagonal. The single crystallites on each BaFe12O19 single-particlechain nanofibers have random orientations. A formation mechanism is proposed based on thermogravimetry/differential thermal analysis (TG-DTA), X-ray diffraction (XRD), and transmission electron microscopy (TEM) at six temperatures, 250, 400, 500, 600, 650, and 800 �C. The magnetic measurement of the BaFe12O19 single-particle-chain nanofibers reveals that the coercivity reaches a maximum of 5943 Oe and the saturated magnetization is 71.5 emu/g at room temperature. Theoretical analysis at the micromagnetism level is adapted to describe the magnetic behavior of the BaFe12O19 single-particle-chain nanofibers

    Records of the Franciscan monastery in Našice, vol. 3 (1821-1842) (eds. Tamara Tvrtković – Milan Vrbanus) Hrvatski institut za povijest – Hrvatski institut za povijest – Podružnica za povijest Slavonije, Srijema i Baranje – Zavičajni muzej Našice – Franjevački samostan Sv. Antuna Padovanskoga u Našicama – Grad Našice, Našice – Slavonski Brod – Zagreb, 2017, pp. 520

    Get PDF
    SiO2 nanofibers have been produced by the electrospinning method by two different approaches: direct spinning of silica precursor-containing nanofibers and spinning of polymer nanofibers followed by sol–gel silica coating. After pyrolysis of the resulting materials, both methods yield silica nanofibers. We extend this work by coating the silica nanofibers with AlN films using a reactive magnetron sputtering technique. Substrate temperature, input gas composition and radio frequency (rf) power are the critical operating parameters for the formation of different crystal structures of the AlN shells. The AlN/SiO2 core-shell heterostructures demonstrate that electrospinning has the potential to produce low-mass, high-surface-area flexible nanofibers for potential space-based applications

    Magnesium Ferrite (MgFe2O4) Nanostructures Fabricated by Electrospinning

    Get PDF
    Magnesium ferrite (MgFe2O4) nanostructures were successfully fabricated by electrospinning method. X-ray diffraction, FT-IR, scanning electron microscopy, and transmission electron microscopy revealed that calcination of the as-spun MgFe2O4/poly(vinyl pyrrolidone) (PVP) composite nanofibers at 500–800 °C in air for 2 h resulted in well-developed spinel MgFe2O4nanostuctures. The crystal structure and morphology of the nanofibers were influenced by the calcination temperature. Crystallite size of the nanoparticles contained in nanofibers increased from 15 ± 4 to 24 ± 3 nm when calcination temperature was increased from 500 to 800 °C. Room temperature magnetization results showed a ferromagnetic behavior of the calcined MgFe2O4/PVP composite nanofibers, having their specific saturation magnetization (Ms) values of 17.0, 20.7, 25.7, and 31.1 emu/g at 10 Oe for the samples calcined at 500, 600, 700, and 800 °C, respectively. It is found that the increase in the tendency ofMsis consistent with the enhancement of crystallinity, and the values ofMsfor the MgFe2O4samples were observed to increase with increasing crystallite size

    Organic nanofibers embedding stimuli-responsive threaded molecular components

    Full text link
    While most of the studies on molecular machines have been performed in solution, interfacing these supramolecular systems with solid-state nanostructures and materials is very important in view of their utilization in sensing components working by chemical and photonic actuation. Host polymeric materials, and particularly polymer nanofibers, enable the manipulation of the functional molecules constituting molecular machines, and provide a way to induce and control the supramolecular organization. Here, we present electrospun nanocomposites embedding a self-assembling rotaxane-type system that is responsive to both optical (UV-visible light) and chemical (acid/base) stimuli. The system includes a molecular axle comprised of a dibenzylammonium recognition site and two azobenzene end groups, and a dibenzo[24]crown-8 molecular ring. The dethreading and rethreading of the molecular components in nanofibers induced by exposure to base and acid vapors, as well as the photoisomerization of the azobenzene end groups, occur in a similar manner to what observed in solution. Importantly, however, the nanoscale mechanical function following external chemical stimuli induces a measurable variation of the macroscopic mechanical properties of nanofibers aligned in arrays, whose Young's modulus is significantly enhanced upon dethreading of the axles from the rings. These composite nanosystems show therefore great potential for application in chemical sensors, photonic actuators and environmentally responsive materials.Comment: 39 pages, 16 figure

    PerR Confers Phagocytic Killing Resistance and Allows Pharyngeal Colonization by Group A Streptococcus

    Get PDF
    The peroxide response transcriptional regulator, PerR, is thought to contribute to virulence of group A Streptococcus (GAS); however, the specific mechanism through which it enhances adaptation for survival in the human host remains unknown. Here, we identify a critical role of PerR-regulated gene expression in GAS phagocytosis resistance and in virulence during pharyngeal infection. Deletion of perR in M-type 3 strain 003Sm was associated with reduced resistance to phagocytic killing in human blood and by murine macrophages in vitro. The increased phagocytic killing of the perR mutant was abrogated in the presence of the general oxidative burst inhibitor diphenyleneiodonium chloride (DPI), a result that suggests PerR-dependent gene expression counteracts the phagocyte oxidative burst. Moreover, an isogenic perR mutant was severely attenuated in a baboon model of GAS pharyngitis. In competitive infection experiments, the perR mutant was cleared from two animals at 24 h and from four of five animals by day 14, in sharp contrast to wild-type bacteria that persisted in the same five animals for 28 to 42 d. GAS genomic microarrays were used to compare wild-type and perR mutant transcriptomes in order to characterize the PerR regulon of GAS. These studies identified 42 PerR-dependent loci, the majority of which had not been previously recognized. Surprisingly, a large proportion of these loci are involved in sugar utilization and transport, in addition to oxidative stress adaptive responses and virulence. This finding suggests a novel role for PerR in mediating sugar uptake and utilization that, together with phagocytic killing resistance, may contribute to GAS fitness in the infected host. We conclude that PerR controls expression of a diverse regulon that enhances GAS resistance to phagocytic killing and allows adaptation for survival in the pharynx

    Finite-size effects in bismuth nanowires

    Full text link
    Arrays of semimetallic Bi nanowires, fabricated by electrodeposition, exhibit strong finite-size effects in transport properties as the carrier mean-free path is limited by the wire dimensions. We have observed a resistivity enhancement, a very large positive magnetoresistance, and a resistance maximum that depends on the strength and orientation of the magnetic field and the nanowire diameter. These results demonstrate electrodeposited Bi nanowires as a new medium for studying the intricate physics in Bi nanostructures. © 1998 The American Physical Society
    corecore