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Branching in electrospinning of nanofibers
A. L. Yarin
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W. Kataphinan and D. H. Renekera�

Maurice Morton Institute of Polymer Science, The University of Akron, 170 University Circle,
Akron, Ohio 44325-3909

�Received 4 October 2004; accepted 11 August 2005; published online 16 September 2005�

Electrospinning of polymer nanofibers often begins with a single, straight, elongating, and
electrified fluid jet that emanates from a droplet tip when the electric field at the surface is high
enough. After some distance an electrically driven bending instability of the elongating jet occurs.
For a polymer solution suitable for electrospinning, capillary instability does not cause the jet to
become a spray of droplets. Under some conditions, a sequence of secondary jet branches emanates
from the primary jet. This paper describes an experiment in which many closely spaced branches
along the jet were observed during the electrospinning of a polycaprolactone solution. A theoretical
description of the branching phenomenon is proposed. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2060928�

I. INTRODUCTION

Electrospinning1,2 provides a straightforward electrohy-
drodynamical method to produce fibers with diameters in the
range of 100 nm or less. Polymer solutions, liquid crystals,
and suspensions of solid particles in polymer solutions were
electrospun in an electric field of the order of 100 V/mm.
The electric force causes an electrically charged jet of poly-
mer solution to emanate from a supported drop. The path of
the elongating and thinning jet is straight for a distance of
several millimeters from the drop, and then the elongating jet
begins to bend.3,4 The electrical forces bend, stretch, and thin
the jet by very large amounts causing the path of the jet to
become complex. The solvent evaporates and the resulting
dry polymer nanofibers can be collected as nonwoven mats3

or as ordered arrays and ropes.5,6 Nanofibers of both electri-
cally insulating and electrically conducting polymers have
been electrospun.1–9

Experimental and theoretical results3,4 showed that elec-
trospinning of polymer nanofibers typically involves a
single, electrified, continuous, elongating, and bending jet.
Branching of the jet into several smaller jets was also ob-
served under some conditions for a number of polymer so-
lutions including, for example, polyethylene oxide,3 and
polycaprolactone �PCL�, the subject of this paper. Bending
and branching may occur together or individually in a par-
ticular segment. It was demonstrated that particular kinds of
polymer and solvent affect the occurrence of branching un-
der the usual conditions of electrospinning. Formation of
nanofibers with noncircular cross sections, including devel-
opment of ribbonlike10 fibers, was also observed during the
electrospinning of solutions that exhibited a propensity for
branching.

In the present work, the initial straight part and the bend-
ing part of electrospinning jets of polycaprolactone dissolved
in acetone developed many lateral branches during electro-

spinning. A mechanism leading to the formation of nanofi-
bers with noncircular cross sections and “undulating” sur-
faces is modeled. In Sec. II the experimental observations of
secondary and tertiary jet branches during electrospinning of
PCL are presented. Sections III and IV contain the theoreti-
cal description of the static, undulating, and equilibrium jet
shapes. Section V deals with the growth, in time, of undula-
tions on the surface in the framework of the linear stability
theory. The theoretical results are discussed and compared to
the experimental data in Sec. VI. Conclusions are drawn in
Sec. VII.

II. EXPERIMENT

The apparatus and the polycaprolactone solutions pre-
pared for this study were similar to those used in a previous
work.11 Polycaprolactone �PCL�, chemical formula
�O�CH2�5CO�n, with a molecular weight of 120 000 g/mol
was dissolved in acetone at concentrations near 15%. The
observations are not sensitive to small variations in concen-
tration. The polymer was purchased from Scientific Polymer
Products, Inc. The experiments were done under ambient
condition at room temperature and comfortable humidity
�about 25% relative humidity�.

Polymer solutions were electrospun from a drop hanging
from a glass pipette with a tip opening in the range from
300 to 400 �m. Dried polymer at the tip sometimes formed
a short, tubelike extension of the pipette, which affected the
size and shape of the droplet, but branches were still ob-
served. Branching jets, of 15 wt % PCL solutions, were pro-
duced when the electrical potential difference between the tip
and the collector was in the range from 3 to 15 kV and the
distance between the spinneret and ground was in the range
from 15 to 70 mm �cf. Fig. 1�. No stable jets were produced
at 2 kV even after a jet was started by touching the drop with
an insulating rod and pulling out a charged fluid segment.
The electric-field strengths for the experiments described in
this paper ranged from 57 to 500 V/mm. The volumetrica�Electronic mail: reneker@uakron.edu
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flow rate of the polymer solution varied slowly and cycli-
cally but the variation was small during the short times re-
quired to observe a particular set of branches.

Jets issuing from the droplets of PCL solution at the
open end of the pipette were photographed at rates up to
2000 frames/s with exposure times as short as 0.1 ms using
a Motionscope from Redlake Imaging. The jets were illumi-
nated with a xenon arc lamp in combination with a diffuser
and a Fresnel lens.3 Prisms were sometimes used3 to produce
stereographic images of the sort shown in Fig. 2�a�. The
lengths and position of the branches in three-dimensional
space were measured and used to create stereographic dia-
grams as shown in Fig. 2�b�. The vector direction of the
branches is in the general direction of the local electric field
at points near the surface of the jet, and the stereographic
images show that the radial component of the field is larger
than the axial component as assumed in the model.

All the measurements of the distance between branches
in this paper were determined from two-dimensional images,
since the collection of the stereographic information is labo-
rious and produces only moderate improvement in the accu-
racy of the measurements. While the theory that follows pre-
dicts the distance between the places where branches were
initiated, the measured distances include the amounts by
which the segments between branches elongated before the
jet solidified. For several typical jets, the distance between
two adjacent branches was measured as a function of time
starting at the frame in which the two branches were first

observed and continuing until one of the branches passed out
of the field of view. The increase in the distance between
adjacent branches was rapid at first and became much slower
after the distance had doubled.

The observed azimuthal directions of the jet branches
vary. An imperfect spiral is suggested by Fig. 2�b�. Adjacent
branches can lower their electrostatic interaction energy by
extending in different azimuthal directions. Interactions be-
tween the branches and the charges on nearby loops of the
primary jet may also affect the direction of a branch. The jet
and the branches are tapered. Bending and branching may
occur together. The stereographic image of the azimuthal di-
rections of the branches provided reliable information about
the location and direction of the branches in three-
dimensional space.

The branches did not occur continuously. As time pro-
gressed, the field shown in Fig. 1 showed the following se-
quence of three types of events: �1� a straight segment, �2�
the onset of the bending instability which usually generated a
garland,11 and �3� a nearly straight and relatively long seg-
ment on which the branches appeared. Branches grew rap-
idly after they appeared. This sequence of three events re-
peated about 10 times/s. The reasons for this repeating
sequence are not presently known. Many such branching
events were photographed. Branches were seen when the
dried nanofibers were observed microscopically, but the
tangled paths of the collected nanofibers made it impractical
to measure the relatively long distance between the branches.
For a particular branching event, a frame that showed a num-
ber of branches was selected. The spacings between adjacent
branches were determined. Two significant figures were kept,
which is consistent with the precision of the measurement.
This measurement was repeated for each of the five to ten
events that occurred within about 1 s. At each electrical field,
the observed spacing between adjacent branches was calcu-
lated for each sequential pair of branches. These numbers
were sorted into “bins” and used to create the histograms
shown in Fig. 3. Each bin was 0.001 mm wide. If the branch-

FIG. 1. Lateral jets from a PCL solution. These “stopped motion” images of
a jet were taken by a high-speed camera at a frame rate of 2000 frames/s.
Every 32nd frame is shown here, so the time separation between the frames
shown was about 12 ms. The 15% PCL solution was electrospun at 5 kV,
and the gap distance from pipette to copper plate collector was 70 mm. The
width of each frame is about 14 mm. The exposure time of each frame was
0.1 ms. The positive z axis in the theoretical model points downward in
these images. Branches are usually initiated in the straight segment and
continue to elongate while the primary jet undergoes the electrically driven
bending instability. The vertical gray line is due to light from the drop
scattered by the camera. This line is not part of the jet. Stereographic images
show that every segment of the primary jet including those segments where
a branch is present moved radially outward and downward as the segment is
elongated.

FIG. 2. �a� A stopped motion stereo image of branches on the straight
segment taken by a high-speed optical camera at a frame rate of
2000 frames/s. The 15% PCL solution was electrospun at 5 kV. The gap
distance from pipette to copper plate collector was 50 mm. The exposure
time of each frame was 0.1 ms. The z axis points downward. �b� The ste-
reographic image was reconstructed from the measurements of the x and y
coordinates of the pairs of points, which could be identified in both the
stereo images of the jet in �a�, by using PHOTOMODELER and RHINO3D soft-
ware programs �Ref. 33�.
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ing was perfectly periodic, the histogram at each electrical
field would contain only one nonzero bin. As can be seen
from Fig. 3, some much longer spaces were observed. The
limited resolution of the optical images made accurate mea-
surements of shorter spaces impractical, although shorter
spaces were occasionally observed.

The significant spacing between branches at each volt-
age is considered to be the spacing associated with the high-
est peak in the histogram. The width of the highest peak is
broadest at the lower electric fields. There is no evidence of
branches forming and then breaking off at the root of the
branch. Some branches are “missing” from the presumed pe-
riodic occurrence of the branches. Sometimes a weak
“second-order peak” was observed in the histogram, with a
spacing about twice as long as the spacing represented in the
primary peak. The second-order peak suggests the occur-
rence of a nonlinear effect, with energy pumped from a lead-
ing mode to a following mode, in a way that is similar to the
occurrence, in the capillary breakup of jets, of satellite drop-
lets between the primary droplets.

Table I lists the experimental data for the four potential
values used, in kilovolts. Each value of the potential is asso-
ciated with an average excess charge per unit jet length and
an electric field determined mainly by the potential applied
and the radius of the jet. In electrospinning, both charge per
unit length and the jet diameter change as the jet elongates
and tapers.3,4,12–14

The linear theoretical model described below predicts

that the observed spacing is approximately related to the
spacing between the radial maxima of the static equilibrium
undulations on an infinitely long, nontapering liquid jet. This
prediction does not rule out the possibility that the absence
of branches at predicted locations may have other, perhaps
nonlinear, causes.

Branching can be profuse, with many long, closely
spaced, and rapidly growing branches. Jets with larger diam-
eters, associated with higher voltages, tend to have more
branches. As will be discussed after the theoretical model is
described, when the diameter of the jet becomes larger at a
higher voltage, the wavelength in the axial direction of the
static undulations on the surface becomes shorter and the
development of closely spaced branches is expected. The
bending instability and the occurrence of branching coexist
with only minor interactions, even when both instabilities are
fully developed as in Fig. 4. The taper rates of the thinner
jets with fewer branches cannot be determined accurately
from the earlier figures, but it appears to be about a factor of
10 smaller than that shown in Fig. 4.

III. INTRODUCTION TO THEORY

An infinitely long jet of incompressible fluid with a uni-
form circular cross section is the theoretical model used as a
starting point to describe a mechanism that leads to quasi-
periodic branching of an electrospinning jet. Gravitational
effects are negligibly small.3 The electrical conductivity is
large enough to assume that excess charge is always at the
surface.

The surface of the jet can respond to the presence of the
electrical Maxwell forces in the following interesting way. If
any element of the charged surface moves outward in re-
sponse to the electrical forces, the motion of that element
will extract energy from the electrical field in order to form a
“hill.” The lateral surface area associated with the growing
hill must increase because volume is conserved, since flow
from the ends cannot occur in an infinitely long jet of incom-

FIG. 3. Distributions of distances be-
tween the adjacent branches at differ-
ent applied electric field �applied
potential/gap distance�. The distribu-
tions are broad at the lower electric
fields, so the uncertainties in experi-
mental values are large. The white ar-
rows indicate the most frequently oc-
curring distance between branches at
each value of the electric field.

TABLE I. The experimental results characterizing the branching.

�0

�kV�
Electric field

�V/mm�
Number of observed

branching events

Total observed
numbers of distances

between branches

4 57 6 68
5 71 5 91
7.5 107 2 54

10 143 5 108
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pressible fluid. The energy required to form the undulating
surface of hills, saddle points, and valleys is provided by the
electric field. The resulting static undulations may be quite
complicated. The distribution of electrical charge on the sur-
face of the jet is similarly complicated.

The liquid in the fluid jet is assumed to be a perfect
electrical conductor, which means that the time intervals re-
quired for changes in the shape of the surface are much
longer than the characteristic charge relaxation time �c. The
relaxation time for PCL solutions in acetone can be estimated
using the data from Ref. 15. There, in Table I the relative
permittivity � and the electric conductivity �e are given as
��25.2 and �e�0.142 mS/m=1.278�106 s−1. Therefore,
�c=� / �4��e��0.155�10−2 ms. If the jet were a perfect
nonconductor of electricity, the redistribution of charge on
the surface that is required to stabilize an undulating surface
by an intricate balance of electrical and surface tension
forces might not be possible.

To find a mathematical expression for the undulating
shapes, the solution of the partial differential equation that
describes the shape of the surface of the jet and the electric
field in the linear approximation is written as a two-
dimensional Fourier series that depends on the azimuthal
angle and the distance along the axis of the jet. Substituting
the assumed Fourier series into the partial differential equa-
tion and using the boundary conditions to evaluate the coef-
ficients of the various terms in the Fourier series leads to the
identification of terms �also called modes in this paper� in the
series that are in equilibrium, static, and nonzero. The sum of
these nonzero modes determines the shape of the undulating
surface of the jet. Since only a subset of the Fourier modes is
static, there is a finite wavelength associated with the static
mode that has the longest wavelength along the axis.

In the stability analysis that follows it is argued that the
longest allowed static wavelength along the jet axis leads to
the observed quasiregular spacing of the branches.

A smooth jet with a circular cross section is the only
stable shape at low electrical potential differences. Not every
undulating shape can occur in equilibrium as the potential is
increased, but some static undulations of the jet surface in-
evitably occur. Near the highest peaks of the static undula-
tions, shape perturbations, which increase the radius or the
curvature, grow rapidly and give rise to branching.

It is shown that, if the amplitude of the static Fourier
mode that has the longest wavelength is dominant and if the
curvature near the higher peaks is high, it is likely that a
branch will develop near each of the peaks of the longest
wavelength Fourier mode. The condition for high curvature
is likely to be satisfied almost everywhere by the presence of
shorter wavelength Fourier modes with small amplitudes.

IV. THEORY OF EQUILIBRIUM STATIC UNDULATIONS
ON THE JET

For spinnable polymer solutions, capillary breakup of
the polymeric fluid jet into drops takes much longer than the
time intervals required to establish an undulating surface on
a jet.16 The first question we address is can a steady-state,
equilibrium, and noncircular cross-sectional shape of the
fluid jet exist under the combined action of the surface ten-
sion and the electric Maxwell stresses? For simplicity we
assume that the space between the fluid jet and the electrode
is vacuum. The fluid is considered to be a perfect conductor.
We also assume that the radial deviations from the circular
cross-sectional shape are small and can be considered as
small perturbations so that �	a, where � is the undulation
amplitude and a is the unperturbed cross-sectional radius.
The experimental evidence in Figs. 2�a� and 4 shows that the
jets we are dealing with are tapering �and may also be bend-
ing� in the length scale A of the order of several millimeters
to 1 cm. The cross-sectional radius is a�10−2 cm. The de-
tailed asymptotical analysis of the electric field about a slen-
der tapering jet in the axial outer capacitor field is readily
available.17 It shows that the radial component of the electric
field near the jet is given by Er=�0 / �r ln�A /a��, where �0 is
the difference of the local potential of the jet surface and the
local potential of the outer capacitor field ��0 is a slight
function of the axial coordinate in the jet z�. This is formally
equivalent to the notion of a hollow cylindrical electrode
with a large radius A, as sketched in Fig. 5. Note that an idea
of such virtual hollow cylindrical electrodes can be traced
back to Ref. 18. In Fig. 5 the radial axis and the azimuthal
angle of the cylindrical frame of reference are also shown,
and the axial coordinate z is perpendicular to the page.

In Fig. 5 the electrical potential of the jet is chosen as
zero, although in many experimental situations the zero-
potential “ground,” represented here by the large cylinder, is
chosen to be zero. The choice of the location of the zero
potential is arbitrary, since only the difference in potential
between the jet and the large cylinder �or ground� matters.

The measured wavelengths of the branching instability
�the interbranching distances� discussed in detail in Sec. VI
are of the order of 
�10−2 cm. The smallness of the ratio

 /A, which is of the order of 10−2, allows the application of
the local analysis of the electric and hydrodynamic fields, in

FIG. 4. A thick jet with many closely spaced branches and a high taper rate
is shown. The diameter decreases between 1% and 2% per unit distance
along the segment shown. The still images of PCL solution were taken by a
high-speed camera at a frame rate of 2000 frames/s. Bending and branching
began after only a short distance from the tip. The 15% PCL solution was
electrospun with 10 kV, and gap distance from pipette to copper plate col-
lector was 70 mm. The width of this frame is about 12 mm. The exposure
time was 0.1 ms.
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particular, to dispense with the slight dependence of �0 on z
considering z as being a “frozen” parameter of the unper-
turbed state. When perturbations are considered, local analy-
sis of tapering capillary jets in Refs. 19–22 shows that taper-
ing would cease to affect the evolution of small perturbations
at the distances of the order of 1 mm from the nozzle in our
case. This means that almost all the perturbations and
branches seen in Figs. 2�a� and 4 are practically unaffected
by tapering.

In the local analysis we employ, the electric potential �
is subject to the Laplace equation

1

r

�

�r
�r

��

�r
� +

1

r2

�2�

��2 +
�2�

�z2 = 0. �1�

In the case of an unperturbed circular cross section the
boundary conditions are

r = a, � = 0, �2a�

r = A, � = �0. �2b�

The solution is given by

� = �0
ln�r/a�
ln�A/a�

. �3�

Beginning from the classical works of Rayleigh and Weber it
is well known that the linear stability analysis of small per-
turbations accurately predicts the wavelength of the fastest
growing mode of perturbations of free liquid jets.16,23–25 The
wavelength does not change much during the nonlinear
stage. Therefore, the interbranching distances at the nonlin-
ear stage are actually determined during the linear stage. One
of our main goals is the prediction of the interbranching
distances measured experimentally �cf. Figs. 2–4�. To
achieve that goal, large perturbation amplitudes are not re-
quired since the interbranching distances are determined in

the linear stage when perturbations are small.
In the static analysis of the present section in the general

case a small radial undulation of the surface can be repre-
sented as

� = �nei�n�+knz�, �4�

where �n is the amplitude, n is the azimuthal wave number,
and kn=2� /
n is the axial wave number with 
n being the
wavelength along the jet axis associated with a particular
azimuthal wave number. Note that for small perturbations the
perturbed cross-sectional area in Fig. 5 is automatically equal
to the unperturbed one.

A solution of Eq. �1� is sought in the form

� = �0� ln�r/a�
ln�A/a�

+ F�r����,z�	 . �5�

Substitution of Eq. �5� in Eq. �1� yields the modified Bessel
equation with the solution

F�r� = C1In�kr� + C2Kn�kr� , �6�

where In and Kn are the modified Bessel functions, and the
cases where n�2 are relevant. The function F�r� clearly
depends on n, but it causes no confusion here to omit the
subscript n. Also, we omit n in the notation of the axial wave
number and here and hereinafter use k instead of kn.

C1 and C2 are the constants of integration. They are
found via the boundary conditions

r = a + �, � = 0, �7a�

r = A, � = �0. �7b�

Using Eqs. �5�–�7� and linearizing for �	a, we obtain

F�r� =
Kn�kA�In�kr� − In�kA�Kn�kr�

a ln�A/a��In�kA�Kn�ka� − In�ka�Kn�kA��
. �8�

The normal Maxwell stress associated with the electric field
at the surface of the fluid jet is equal to ��� /�� �2 /8�, where
�� /�� � denotes the derivative along the normal to the sur-
face and Gaussian �cgs� units are used. Linearizing, we ob-
tain the electrical normal stress outside the jet surface in the
form of a component of a second-rank tensor26

���
outside =

�0
2

8�
� 1

a2ln2�A/a�
−

2�

a3ln2�A/a�

+

2�dF/dr�
r=a�

a ln�A/a� 	 . �9�

The second and third terms inside the square brackets of Eq.
�9� are referred to later as the perturbed part of the pressure.
In the equilibrium state considered in the present section,
pressure inside the fluid jet is constant �C�, so that the nor-
mal stress inside the jet is

���
inside = − C . �10�

The pressure difference �p� between ���
outside and ���

inside is
due to the capillary pressure associated with the surface ten-
sion ��,

FIG. 5. Sketch of the cross section of the jet. The dashed line represents the
surface of an unperturbed infinitely long cylindrical jet. The superimposed
solid line represents a cross section of the jet corresponding to an arbitrarily
chosen deviation from the original circular cross section. The existence of
six radial undulations suggests that the Fourier mode with the azimuthal
wave number n=6 is dominant for the configuration shown. The outer circle
represents, at a different scale, the virtual hollow cylindrical electrode,
which is assumed to have a radius A that is much larger than the radius of
the jet a.
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p = �1

a
−

1

a2�� +
�2�

��2� −
�2�

�z2	 . �11�

The expression for p has been simplified since �	a. At the
surface of the fluid jet the boundary condition is

���
inside = ���

outside − p. �12�

Note that in static cases considered in the present section the
velocity is zero and thus all the viscous stresses are zero in
Eq. �12�.

As a convention, pressure is usually thought of as posi-
tive inside a droplet and outwardly directed stress is consid-
ered to be a negative pressure. Equation �12� means, as
usual, that pressure inside is equal to the pressure outside
plus the pressure associated with surface tension. Substitut-
ing Eqs. �9�–�11� into �12�, we separate first the unperturbed
part, which yields the dimensional constant C as shown in
Eq. �13�

C =


a
−

�0
2

8�a2 ln2�A/a�
. �13�

The stress acting on the surface of the fluid from the
outside is due to the electrical Maxwell stress defined in Eq.
�9� and discussed near Eq. �13� of Ref. 27. The perturbed
electric forces are associated with the redistributed electric
charge at the surface of a perturbed jet. Also, according to
the perturbed part of Eq. �12�, the perturbed part of the stress
from inside the jet comes from the perturbed part of the
Maxwell stress and the capillary pressure. To have perturbed
pressure in an incompressible fluid in a jet with a more com-
plicated static shape, it is necessary to require equality be-
tween the perturbed electrical forces and the perturbed cap-
illary pressure everywhere on the complicated static shape.
The separated perturbed part of Eq. �12�, after some algebra,
yields the following equation:

D =
�1 − n2 − �2�ln2 Ā

���,n,Ā�
, �14�

here D and � are both dimensionless and the following no-
tation is used:

� = ka and n � 2 �15a�

Ā = A/a � 1, �15b�

D =
�0

2

4�a
, �15c�

���,n,Ā�

= 1 − ��Kn��Ā��dIn���/d�� − In��Ā��dKn���/d��

In��Ā�Kn��� − In���Kn��Ā�
� .

�15d�

Equation �14� reduces to

D =
�1 − n2�ln2 Ā

1 − n�Ān + Ā−n�/�Ān − Ā−n�
�16�

as �→0. In the most relevant case where Ā�1, Eq. �16� can
be further simplified and takes the form

D = �1 + n�ln2 Ā , �17�

which approximately yields

D = n ln2 Ā , �18�

since as we shall see in Sec. VI, the values of n=7–9 are of
interest in the present case. As �→� Eq. �14� reduces to

D = � ln2 Ā . �19�

When Eq. �14� has a solution for a given potential �0 and n
�or, equivalently, a given D and n�, a nontrivial static equi-
librium shape of the jet surface that undulates both in azi-
muthal directions and along the axis is possible. The solution
of Eq. �14� yields a dimensionless longitudinal wave number
�n corresponding to each value of n �the azimuthal wave
number� for which the solution exists. Then the superposi-
tion of the azimuthal and axial modes, corresponding to each
value of n for which a solution exists, is the calculated equi-
librium shape of the jet surface written as

r̄surface = 1 + 
n=2

N

�̄n cos�n� + �nz̄� , �20�

where �̄n is the amplitude of the nth mode of the Fourier
series that represents deviations from a smooth cylindrical
shape of the jet surface divided by a to make the amplitude
dimensionless. Similarly r̄surface, and z̄ are obtained by divid-
ing rsurface and z by a. N is the largest value of n for which a
solution of Eq. �14� exists. Based on the stability consider-
ations in Sec. V, we suggest that the Fourier mode, labeled
by N, in expression �20� for r̄surface plays a major role in the
establishment of the spacing between the branches and pro-
vide experimental data that support the reasonableness of
this suggestion. A similar calculation is described in Ref. 28
where a planar unperturbed liquid surface and a planar elec-
trode parallel to it were considered. The present calculation
differs from that of Ref. 28 in an important aspect. The pla-
nar surface under the finite electrode considered in Ref. 28
can rise uniformly without developing any undulations be-
cause, at the edges, fluid can flow under the electrode. In our
description of the behavior of an infinitely long cylinder, the
volume of the fluid inside the jet is conserved. Flow of ad-
ditional liquid into the jet from the ends, which are at an
infinite distance, is not considered. Therefore, development
of radial undulations on the surface of a cylinder must occur
on the unperturbed cylindrical surface and not on the back-
ground of a uniform increase in the radius of the jet, which
would be analogous to the rise of the free surface under the
finite electrode in planar case.28

Equation �14� was solved numerically and the results are
depicted in Fig. 6, which is a graph of D as a function of �.
A solution is identified by the intersection of the straight
horizontal line corresponding to a particular value of the di-
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mensionless parameter D, with the curves representing the
value of the right-hand side of Eq. �14� as a function of �.
Figure 6 will also be discussed in more detail in Sec. V in the
context of the stability analysis and comparison with experi-
mental data.

V. RELATIVE STABILITY OF PERTURBATIONS
OF THE CIRCULAR CROSS-SECTIONAL SHAPE

As the potential is increased, the cylindrical jet can de-
velop complicated undulations that are stable in time. Due to
further perturbations, the undulations change in shape and
can become unstable and grow with time.

The stability problem is considered here. A flow inside
the jet, which follows the development of undulations on the
surface, is allowed. This flow is described in the frame of
reference associated with the jet in flight. Such a flow is

governed by the linearized Navier-Stokes equations23,29–31 in
cylindrical coordinates with the following linearized bound-
ary conditions imposed at the jet surface �where in the linear
approximation r=a�:

vr� =
��

�t
, �21a�

�r�� = 0, �21b�

�rz� = 0, �21c�

− �rr� = −


a2�� +
�2�

��2� − 
�2�

�z2 −
�0

2

8��−
2�

a3 ln2 Ā

+

2�dF/dr�
r=a�

a ln Ā
	 . �21d�

The primes indicate small perturbations of the named func-
tions.

Equation �21a� is the kinematical boundary condition re-
lating the perturbed radial component of velocity to pertur-
bations of the undulation amplitude �, with t being the time.
Conditions �21b� and �21c� imply the absence of viscous
shear stresses at the jet surface. The last boundary condition
�21d� corresponds to the balance of normal stresses at the jet
surface and is a generalization of Eq. �12� for the dynamic
case. Note that the perturbed radial stress �rr� incorporates the
viscous stresses at the jet surface. Equations �9� and �11�
were also used. Subscripts r, �, and z correspond to the ra-
dial, azimuthal, and axial directions of the cylindrical coor-
dinate system associated with the moving jet. All the pertur-
bations we are introducing now incorporate the factor
exp��t+ i�n�+knz��, with � being the growth rate �cf. with
the static Eq. �4��. After solving the linearized Navier-Stokes
equations and satisfying the boundary conditions �21�, we
arrive at the following dimensionless characteristic equation
of the problem which determines the growth rate �

�̄2 + �̄Oh2 �

In���
�W��,���In+1� ��� + U��,���In−1� ��� + ��In+1� ��� + In−1� �����

= Oh2 �

In����1 − s2 +
D

ln2 Ā
��T − 1� − �2	 �

1

2
�W��,��In+1��� + U��,��In−1��� + In+1��� + In−1���� . �22�

Some details of the calculations leading to Eq. �22� can be
found in Ref. 30 where viscous Newtonian fluids were con-
sidered and in Ref. 31 where viscoelastic Maxwell fluids
were considered. In the present work we obtain the Newton-
ian case as the limiting case, with the Deborah number zero,
of the results of Ref. 31. Some comparisons are made with
Ref. 30 as well. The following notations are adopted in Eq.
�22� for the dimensionless perturbation growth rate �̄, the
dimensionless Ohnesorge number �Oh� that characterizes the

ratio of the viscous to the inertial and surface tension forces,
and the dimensionless parameter �:

�̄ =
��a


, �23a�

Oh =
�

��a�1/2 , �23b�

FIG. 6. The straight “line 1” shows the value of D for �0=5 kV. The curve
n=2 has its lowest value at the point S, which corresponds to the onset of
branching. This corresponds to the lowest value of D at which stable undu-
lations can occur. No branching is predicted at lower values of the dimen-
sionless potential D. Also, for the chosen value of �0=5 kV, modes with
n�9 yield no solutions. Hence, N=9 in this case.
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�2 = �2�1 +
�̄

�2

1

Oh2� . �23c�

The viscosity is denoted by �. For convenience, functions
W�� ,�� and U�� ,�� used in Eq. �22� are given in the Appen-
dix. Also, the expression for T in Eq. �22� is

T =
Kn��Ā�dIn���/d� − In��Ā�dKn���/d�

In��Ā�Kn��� − In���Kn��Ā�
. �24�

It is emphasized that Eq. �22� is valid for n�0, i.e., for
the circular cross section �n=0�, for the bending �n=1�, and
for the branching �n�2� modes. In the case of electrospin-
ning, viscous forces in the polymer solution dominate the
dynamics of small perturbations of the shape of thin jets, and
surface tension is less significant.

When the viscous forces dominate the surface tension,
the Ohnesorge number is much greater than 1, Oh�1.

The circular cross-section case �n=0� with and without
an electric field was studied in the seminal works of
Rayleigh,24 Weber,25 and Chandrasekhar.23 In this �n=0�
case, for Oh2�1, Eq. �23c� can be approximated as

� = ��1 +
�̄

2�2

1

Oh2� . �25�

In addition, for n=0 and for any �, one can obtain from Eqs.
�A1�–�A8� in the Appendix that

W��,�� = U��,�� = − 1. �26�

Given Eqs. �25� and �26�, both factors in the curly brackets
in Eq. �22� are expected to be the order of O�1/Oh2�,
whereas the terms in Eq. �22� are actually of the order O�1�.
In this case no terms disappear in Eq. �22� in spite of the
limit of large Ohnesorge number. The resulting equation con-

tains �̄ as a factor in all the terms. This �̄ is cancelled from

each term, and a linear equation for �̄ yields the solution of
Rayleigh,24 Weber,25 and Chandrasekhar,23 given by Eq. �19�
in Ref. 30. Note that in Ref. 30, as in this paper, the case of

Ā�1 was considered. Without the electric field the result of
Rayleigh,24 Weber,25 and Chandrasekhar,23 just mentioned,
corresponds to the capillary instability of very viscous fluid
jets. Weber25 also showed that the characteristic equation for
the pure capillary instability �with no electric effects in-
volved� of highly viscous jets is very accurately approxi-
mated by the following long-wave limit formally valid for
�→0:

�̄ =
1

6
�1 − �2� . �27�

The case of n=1 corresponds to the bending instability
and, in fact, has already been studied in the long-wave ap-
proximation in Refs. 3 and 4. In the case we are dealing with
in the present work, for n�2, the factors in the curly brack-
ets in Eq. �22� are of the order of O�1�, and not of the order
of O�1/Oh2� as it was for n=0. Therefore, in Eq. �22� in the
case of Oh2�1, the dominant terms are those which contain
the multiplier Oh2 �specifically the second term on the left-

hand side and the term on the right-hand side�. Then the �̄2

term can be neglected. The solution of the characteristic
equation �22� for the case of interest n�2 becomes

�̄ =
1

2�1 − n2 +
D

ln2 Ā
��T − 1� − �2	Y��� , �28�

where Y is the function defined for convenience as

Y���

=
W��,��In+1��� + U��,��In−1��� + In+1��� + In−1���

��W��,��In+1� ��� + U��,��In−1� ��� + In+1� ��� + In−1� ����
.

�29�

For n�1 and �→0

Y��� =
1

n
. �30�

Note that Eqs. �28�–�30� of the present work yield the same
asymptotical behavior as the asymptotical behavior follow-

ing from Eq. 22 of Ref. 30 when Ā�1, n�1, and �→0. On
the other hand, for �→�,

Y��� =
1

�
. �31�

Also note that Y����0 for any 0����. Therefore, the sign

of �̄ given by Eq. �28� is fully determined by the factor in the
square brackets in Eq. �28�. Then the threshold to the insta-
bility occurs when the term in the square brackets in Eq. �28�
becomes equal to zero, which yields Eq. �14�. The onset of
branching instability is indicated when, for any allowed n,
the dimensionless wave number � belongs to the range 0
����n, where �n is a solution of Eq. �14�. For this range of

�, Eq. �28� yields �̄�0, which indicates the onset of insta-
bility.

VI. RESULTS AND DISCUSSION

We now examine the stability of the individual modes,
which add together to describe the static undulations as the
potential is increased, to show that perturbations of the un-
dulation amplitude � in regions near the highest peaks, with
the highest curvature, will grow most rapidly. In the calcula-

tions, the value of Ā=50 was used, which yields a plausible
value of A of the order of 2500–4750 �m for the values of a
listed below. The results of the calculations change only

slightly when Ā is varied by 20%. The following four cases,
for which the experimental information has been described
above, were considered:
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�i� �0=4 kV, a=50 �m;
�ii� �0=5 kV, a=60 �m;
�iii� �0=7.5 kV, a=95 �m; and
�iv� �0=10 kV, a=95 �m.

In the calculations we used �=791 kg/m3 and 
=23 mN/m for the PCL dissolved in acetone. A representa-
tive situation is depicted in Fig. 6 corresponding to case �ii�.
Here there are intersections of line 1 representing �D� with
curves that show the value of the right-hand side of Eq. �14�
for several values of n. The allowed modes, the correspond-
ing wave numbers in the axial direction �n, and wavelengths
along the axis �
n=2�a /�n� are shown in Table II. In this
case, with �0=5 kV, solutions of Eq. �14� exist for values of
n from 2 to 9, where the intersections of the straight line 1
with the curves D��� occur. The longest wavelength has the
subscript N=9 and 
9 is equal to 119 �m. The curves for
n=10 and for n�10, e.g., n=15, do not intersect line 1, so
static equilibrium solutions exist only for �2–�9. The small-
est value of �n, �called �N� corresponds to the mode with the
longest wavelength that is allowed, which is called 
N.

To illustrate the predicted static equilibrium undulations
that occur under these experimental conditions, namely, to
predict their “landscape,” it is necessary to assume their am-
plitudes and phases. Since the experimental observation does
not provide these amplitudes, we illustrate the calculation by
assuming that only two modes have nonzero amplitudes. The

assumed amplitudes of the modes are �̄2=0.03, �̄3= ¯ = �̄8

=0, and �̄9=0.1. The phases of all the modes are set to zero
at z=0 in this example. Note that the distance between the
branches is dominated by the longest allowed wavelength
along the axis 
N which is not affected by the amplitudes and
phases of the modes.

The fluid jet cross section �the xy plane at z=0� with
equilibrium static undulations corresponding to �0=5 kV
�case �ii�� is shown by the heavy line in Fig. 7. The median
longitudinal section of the fluid jet for this case is shown as
the heavy line in Fig. 8. As the potential difference increases,
the static equilibrium shapes of the fluid jet become more
complicated with higher modes involved. For �0=4 and
10 kV, for example, N=7 and 25, respectively. Table III lists
the values of N predicted for the four cases considered. The
three-dimensional shape of the surface of the fluid jet corre-
sponding to that of Figs. 7 and 8, case �ii� with �0=5 kV, is
depicted in Fig. 9.

The curvature �K in cm−1� at any �� ,z� position on the
undulating, static, and equilibrium surface is readily calcu-

lated from Eq. �20�. For case �ii� with �̄2=0.03 and �̄9=0.1

and �̄n=0 for n=3–8 considered here, the curvature is

K = �1/a��1 + 0.03�3 + �2
2�cos�2� + 2�z/
2� + 0.1�80

+ �9
2�cos�9� + 2�z/
9�� , �32�

where a, z, 
2, and 
9 are all measured in centimeters.

TABLE II. The wavelengths of the static undulations 
n predicted in case
�ii�, �0=5 kV.

n �n


n �calculated�
��m�

2 9.81 38.4
3 9.53 39.6
4 9.11 41.3
5 8.55 44.1
6 7.81 48.3
7 6.81 55.3
8 5.43 69.4
9 3.17 119.0

FIG. 7. The solid line shows cross-sectional shape at z=0 in case �ii�. The

shape corresponds to an arbitrary choice of �̄2=0.03 and �̄9=0.1 and �̄n=0
for n=3–8; a=0.006 cm. The resulting cross-sectional shape is obviously
noncircular. The dashed line shows the shape of the cross section resulting

from a single mode with �̄2=0.03 and �̄3– �̄9=0, the dotted line shows the

cross section for �̄9=0.1 and �̄2– �̄8=0. The radius �A� of the double dots and
dash �··—··—� circle representing the virtual outer electrode was reduced by
an appropriate factor to fit in the frame of this diagram. The radius to a point
on any surface of interest is rsurface.

FIG. 8. The calculated longitudinal section at x=0 of the surface of the fluid

jet in case �ii� with �̄2=0.03 and �̄9=0.1 and �̄n=0 for n=3–8 is shown by
the solid line. The dashed line shows the shape of the cross section resulting

from a single mode with �̄2=0.03 and �̄3– �̄9=0. The dotted line shows the

cross section for �̄9=0.1 and �̄2– �̄8=0. For the latter two curves according to
Table II the wavelengths are 
2=38.4 �m and 
9=119 �m, respectively.
The wavelength 
9 is emphasized by shading the first, third, and fifth cycles.
The same cycles are emphasized in Fig. 9.
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The upper part of Fig. 9 shows that the four points with
the highest curvatures occur at irregular intervals along the z
axis commensurate with the observed spacing of branches.
The highest curvatures corresponded to an undulation with a
radius of curvature of about �1/2160� cm, which is about
4.63 �m.

The following stability analysis shows how this curva-
ture pattern is related to the branching process. For the case
�ii� �0=5 kV, a=60 �m, the growth rates of perturbations,
predicted by Eqs. �28�–�31�, for the Fourier modes with n
=7, 8, and 9 are shown in Fig. 10.

The horizontal straight line in Fig. 10 represents �̄=0.
The static equilibria discussed above correspond to the inter-
section of this line with the curves for n=7, 8, and 9. The

sections of the curves with �̄�0 correspond to the instabil-

ity, whereas with �̄�0, to stability. Therefore, where a curve
for a particular value of n is greater than zero, the corre-
sponding perturbation will grow and the surface undulations
are unstable. Where the curve is below zero, the correspond-
ing perturbations will shrink. In Fig. 10 it is seen that for 0
����n �the corresponding �n are given in the last three

lines of Table II�, perturbations amplitudes grow since �̄

TABLE III. The predicted number of static modes.

�0 �kV� N

4 7
5 9
7.5 13

10 25

FIG. 9. The lower part shows a shaded
perspective drawing of five cycles of
the longest wavelength mode on the
calculated surface of the jet for �0

=5 kV, case �ii�, with �̄2=0.03 and

�̄9=0.1 and �̄n=0 for n=3–8. Each
cycle is equal to 
9 in length. The
maximum curvatures in the cross sec-
tions along the jet were also calculated
and values of the highest curvatures
were plotted on the “unrolled” �z sur-
face in the upper part of the figure.
The locations of the highest curvatures
of the surface are identified by arrows
in the shaded drawing. In the �z planes
for curvatures of 2159 and 2161 cm−1,
successive cycles are alternately
shaded and unshaded for comparison
with Fig. 8.

FIG. 10. Growth rates vs axial wave number for the modes along the axis
that correspond to the azimuthal wave numbers n=7, 8, and 9. For those �

where �̄�0, the instability sets in and perturbations amplitudes grow. This
occurs for 0����n, where �n correspond to static undulations.
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�0. The onset of the instability of undulation amplitude de-
pends on the presence and amplitude of the electric field,

since without an electric field �D=0� , �̄ is always negative
for any n�1 according to Eq. �28�.

The complicated static undulations of the surface, simi-
lar to the representative ones shown in Fig. 9, and corre-
sponding only to the modes �n where n=2–N could also be
perturbed more by growing perturbations of modes with �
��n. This is, in fact, inevitable and leads to radial growth in
the neighborhood of the regions with the highest static cur-
vature on peaks. The points with the highest static curvature
occur at the peaks of the mode with n=N, i.e., n=9 in case
�ii�. Therefore, the undulations with � close to �N i.e., �
��n, actually develop the highest perturbation amplitude at
the earliest time. Regions having the largest initial local cur-
vature, which are located on the highest peaks, will grow
most rapidly and give birth to branches. This is a conse-

quence of the facts that �̄=O�1� for all the modes and that
there is no sharp maximum in the growth rate for any spe-
cific wave number, as shown by the curves for n=7–9 in
Fig. 10. Therefore, the distance between the branches on the
jet will be very close to the distance corresponding to �N for
any given electric field and, in fact, determined by a static
mode with n=N. Branching will happen first of all at a static
crest with the highest curvature, which sits near the radial
maxima of the mode with the wavelength 
N=2�a /�N, as

calculated from Eq. �14�. Note that the values of �̄ predicted
for nonaxisymmetric electrically driven Fourier modes with
n�2 are larger or of the same order as for the axisymmetric
perturbations of undulation amplitude with n=0 that lead to
capillary instability. Indeed, for the capillary instability
�where n=0� according to Eq. �27�, the highest growth rate is

�̄max=1/6. However, the initial amplitudes of the nonaxisym-
metric perturbations, which can lead to branching, add to the
static undulations that already exist on the jet surface. These
perturbations will grow even more rapidly than if they sim-
ply added to the radius of the cylindrical surface. Also note
that in electrospinning, viscoelastic forces developed by the
rapid elongation of the jets tend to prevent capillary breakup
of both the primary and secondary jets. This is an additional
stabilization produced by the nonlinear viscoelasticity due to
polymer molecules.

According to the above discussion, each cycle of 
N

along the axis contains a region of high curvature near its
peak, which can grow rapidly and become a branch. The
spacing between these branches is of the order of 
N �
9 in
case �ii��. This result is only slightly sensitive to the ampli-

tudes �̄n assumed for the static undulations as long as the

amplitude �̄N is the largest. These amplitudes are not ob-
served in the experiment at present but, in principle, can be
measured in the future. If the undulation amplitudes are as
much as 1% of the radius of the jet, i.e., about 0.5 �m, it is
possible that they might be seen. Interferences between light
that passed through a cylindrical jet with light reflected from
the surface of the same jet may provide a way to observe the
presence of undulations of the surface.32

Experimental data on the spacing between branches are
available for the four cases �i�–�iv�, where the unperturbed

jet radius was 50�a�95 �m �cf. Fig. 3�. Branching was
observed in all four cases, with the branches being �10 �m
in diameter. The calculations also indicated that branching
could occur.

The calculations were made for all four potentials for
which measurements are available, and the predicted branch
spacings are compared with the measured ones in Table IV.
The predictions at the higher voltage values �7.5 and 10 kV�
are commensurate with the measurements. The comparison
at the lower voltage values is not so good especially at 5 kV.
The wide distribution of observed spacings at the lower volt-
age values shown in Fig. 3 may be caused by variations
�perhaps a factor of 2� due to the elongation of the distance
between branches that occurs after the branches start to grow.
The experimentally observed spacing distributions at 7.5 and
10 kV suggest narrower distributions of the distance between
branches, but the distances shorter than 100 �m between the
branches could not be resolved in these optical images.

VII. SUMMARY AND CONCLUSIONS

Electrospinning of 15 wt. % polycaprolactone in acetone
at voltage of 4–10 kV and distances between electrodes of
the order of several centimeters was accompanied by the
emanation of a series of secondary jets in radial directions
from the primary jet. The primary jet experienced, as usual,
bending instability. Branching jets appeared at both straight
and bending parts of the primary jet. An electrohydrody-
namical theory proposed to describe this phenomenon
showed that the surface of a conducting fluid jet can acquire
complicated static equilibrium undulations under the com-
bined effects of the electric Maxwell stresses and surface
tension as the electrical stresses increase. A perfectly smooth
cylindrical jet develops static undulations with complex
shapes in a cylindrical electric field. It was shown that such
undulating surfaces could become unstable at the sites of the
highest local surface curvature on the tops of the longest
wavelength undulations. This instability leads to the emana-
tion of lateral branches from the primary jet at these unstable
sites.

The observed and predicted distances between branches
are commensurate for electrical potentials ranging from
4–10 kV but the agreement is less than conclusive. At high
voltages the distances between closely spaced branches were
too small to be measured precisely and at low voltage the
variation of the measured distance between branches was
large. It was noted that both the experiment and the theory

TABLE IV. The calculated and observed distances between branches along
the jet.

Applied
voltage

�kV�

Average electric
field between the tip

and the collector
�V/mm�


N �calculated�
��m�


N �measured�
��m�

4 57 379 294
5 71 119 353
7.5 107 118 118

10 143 124 118
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show that as the applied voltage increases, the predicted dis-
tance between branches mostly decreases. An important fu-
ture experimental problem is to observe the evolution of the
undulations of the jet surface prior to the appearance of the
branch jets.
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APPENDIX

S1 = �In−1��� − In+1��� + ��In+1� ��� − In−1� ���� − n�In+1���

+ In−1����� , �A1�

S2 = �In−1�����2 + �n − 1�2 + �2 − 1� − n�− In−1���

+ �In−1� ����� , �A2�

S3 = �− In+1����2�2 + �n + 1�2 − 1� − In−1����2�2 + �n

− 1�2 − 1� + n��In+1��� − In−1���� − ��In+1� ���

− In−1� ������ , �A3�

S4 = �− In−1��� + �In−1� ��� + nIn−1���� , �A4�

S5 = �In+1��� − �In+1� ��� + nIn+1�����In−1���

� ��2 + �n − 1�2 + �2 − 1� − n�− In−1��� + �In−1� �����

− �− In−1��� + �In−1� ��� + nIn−1�����In+1���

� ��2 + �n + 1�2 + �2 − 1� − n�In+1��� − �In+1� ����� ,

�A5�

W��,�� =
S1S2 − S3S4

S5
, �A6�

S6 = �In+1��� − �In+1� ��� + nIn+1���� ,

S7 = �In+1�����2 + �n + 1�2 + �2 − 1� − n�In+1���

− �In+1� ����� , �A7�

U��,�� =
S6S3 − S1S7

S5
. �A8�
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