1,321 research outputs found

    Quantum Field Theory with Nonzero Minimal Uncertainties in Positions and Momenta

    Get PDF
    A noncommutative geometric generalisation of the quantum field theoretical framework is developed by generalising the Heisenberg commutation relations. There appear nonzero minimal uncertainties in positions and in momenta. As the main result it is shown with the example of a quadratically ultraviolet divergent graph in Ď•4\phi^4 theory that nonzero minimal uncertainties in positions do have the power to regularise. These studies are motivated with the ansatz that nonzero minimal uncertainties in positions and in momenta arise from gravity. Algebraic techniques are used that have been developed in the field of quantum groups.Comment: 52 pages LATEX, DAMTP/93-33. Revised version now includes a chapter on the Poincare algebra and curvature as noncommutativity of momentum spac

    Report on some neotropical ant studies

    Get PDF

    Perturbation spectrum in inflation with cutoff

    Get PDF
    It has been pointed out that the perturbation spectrum predicted by inflation may be sensitive to a natural ultraviolet cutoff, thus potentially providing an experimentally accessible window to aspects of Planck scale physics. A priori, a natural ultraviolet cutoff could take any form, but a fairly general classification of possible Planck scale cutoffs has been given. One of those categorized cutoffs, also appearing in various studies of quantum gravity and string theory, has recently been implemented into the standard inflationary scenario. Here, we continue this approach by investigating its effects on the predicted perturbation spectrum. We find that the size of the effect depends sensitively on the scale separation between cutoff and horizon during inflation.Comment: 6 pages; matches version accepted by PR

    Mode Generating Mechanism in Inflation with Cutoff

    Get PDF
    In most inflationary models, space-time inflated to the extent that modes of cosmological size originated as modes of wavelengths at least several orders of magnitude smaller than the Planck length. Recent studies confirmed that, therefore, inflationary predictions for the cosmic microwave background perturbations are generally sensitive to what is assumed about the Planck scale. Here, we propose a framework for field theories on curved backgrounds with a plausible type of ultraviolet cutoff. We find an explicit mechanism by which during cosmic expansion new (comoving) modes are generated continuously. Our results allow the numerical calculation of a prediction for the CMB perturbation spectrum.Comment: 9 pages, LaTe

    The Minimal Length and Large Extra Dimensions

    Full text link
    Planck scale physics represents a future challenge, located between particle physics and general relativity. The Planck scale marks a threshold beyond which the old description of spacetime breaks down and conceptually new phenomena must appear. Little is known about the fundamental theory valid at Planckian energies, except that it necessarily seems to imply the occurrence of a minimal length scale, providing a natural ultraviolet cutoff and a limit to the possible resolution of spacetime. Motivated by String Theory, the models of large extra dimensions lower the Planck scale to values soon accessible. These models predict a vast number of quantum gravity effects at the lowered Planck scale, among them the production of TeV-mass black holes and gravitons. Within the extra dimensional scenario, also the minimal length comes into the reach of experiment and sets a fundamental limit to short distance physics. We review the status of Planck scale physics in these effective models.Comment: 18 pages, 5 figures, brief review to appear in Mod. Phys. Let.

    Modelling a scale-based strontium isotope baseline for Hungary

    Get PDF
    Strontium isotope analysis has recently proven to be a useful tool to elucidate population movements and subsistence strategies in ecological and archaeological sciences. The interpretation depends on the size, type, availability, and preservation of the sample and the reliability of the produced strontium isotope baseline. However, collecting quantitatively and qualitatively suitable baseline samples is considered a challenging task in archaeological research. To meet these challenges, we introduce an innovative analytical technique, which enables the analysis of small sample sizes from heterogeneous site distribution and environmental settings. This article integrates multivariate environmental modelling and bioarchaeological data of 49 sites to establish the first scale-based differentiation between site-specific and micro-regional strontium isotope baselines with various sample sizes in Hungary. In future mobility studies, this approach will allow distinguishing human and faunal movement ranges on different geographical scales.Strontium isotope analysis has recently proven to be a useful tool to elucidate population movements and subsistence strategies in ecological and archaeological sciences. The interpretation depends on the size, type, availability, and preservation of the sample and the reliability of the produced strontium isotope baseline. However, collecting quantitatively and qualitatively suitable baseline samples is considered a challenging task in archaeological research. To meet these challenges, we introduce an innovative analytical technique, which enables the analysis of small sample sizes from heterogeneous site distribution and environmental settings. This article integrates multivariate environmental modelling and bioarchaeological data of 49 sites to establish the first scale-based differentiation between site-specific and micro-regional strontium isotope baselines with various sample sizes in Hungary. In future mobility studies, this approach will allow distinguishing human and faunal movement ranges on different geographical scales

    Field theory on evolving fuzzy two-sphere

    Full text link
    I construct field theory on an evolving fuzzy two-sphere, which is based on the idea of evolving non-commutative worlds of the previous paper. The equations of motion are similar to the one that can be obtained by dropping the time-derivative term of the equation derived some time ago by Banks, Peskin and Susskind for pure-into-mixed-state evolutions. The equations do not contain an explicit time, and therefore follow the spirit of the Wheeler-de Witt equation. The basic properties of field theory such as action, gauge invariance and charge and momentum conservation are studied. The continuum limit of the scalar field theory shows that the background geometry of the corresponding continuum theory is given by ds^2 = -dt^2+ t d Omega^2, which saturates locally the cosmic holographic principle.Comment: Typos corrected, minor changes, 23 pages, no figures, LaTe

    On Signatures of Short Distance Physics in the Cosmic Microwave Background

    Get PDF
    Following a self-contained review of the basics of the theory of cosmological perturbations, we discuss why the conclusions reached in the recent paper by Kaloper et al are too pessimistic estimates of the amplitude of possible imprints of trans-Planckian (string) physics on the spectrum of cosmic microwave anisotropies in an inflationary Universe. It is shown that the likely origin of large trans-Planckian effects on late time cosmological fluctuations comes from nonadiabatic evolution of the state of fluctuations while the wavelength is smaller than the Planck (string) scale, resulting in an excited state at the time that the wavelength crosses the Hubble radius during inflation.Comment: 11 pages, 4 figure

    The Corley-Jacobson dispersion relation and trans-Planckian inflation

    Get PDF
    In this Letter we study the dependence of the spectrum of fluctuations in inflationary cosmology on possible effects of trans-Planckian physics, using the Corley/Jacobson dispersion relations as an example. We compare the methods used in previous work [1] with the WKB approximation, give a new exact analytical result, and study the dependence of the spectrum obtained using the approximate method of Ref. [1] on the choice of the matching time between different time intervals. We also comment on recent work subsequent to Ref. [1] on the trans-Planckian problem for inflationary cosmology.Comment: 6 pages, Revtex
    • …
    corecore