arXiv:hep-th/0201189 v1 24 Jan 2002
 relation $\omega_{\text {phys }}=k$ by a non-standard one that mimics
possible modifications of the physics in the ultraviolet

 [eכ!s

 regime is highly doubtful.

 The trans-Planckian problem of inflation is the follow-
ng: in many models of inflation, the phase of accelerated

INTRODUCTION

PACS numbers: $98.80 . \mathrm{Hw}, 98.80 . \mathrm{Cq}$ We also comment on recent work subsequent to [1] on the trans-Planckian problem for inflationary give a new exact analytical result, and study the dependence of the spectrum obtained using the
approximate method of [1] on the choice of the matching time between different time intervals an example. We compre the methods used in, previous work [1] with the WKB approximation In this Letter we study the dependence of the spectrum of fl'lctuations in inflationary cosmology
n possible effects of trans-Planckian physics, using the Corley/Jacobson dispersion relations as (Dated: January 24, 2003)
a new exact analytical solution. This one allows us tóad_ dress some technical points that have been raised recently III in the literature and to compare the method of Ref. [1] with the other methods used in the works subsequent to [1]. Explicitly, in Section II, we compare the Wigner-Kramers-Brillouin (WKB) approximation method used in Ref. [5] to calculate the power spectrum with the method used in Ref. [1]. In section III, we consider the exact formula mentioned above which allows us to make a smooth transition from the region where the subPlanckian effects are important to the region where the dispersion relation is standard.'We take advantage of the fact that this new solution is also valid for $b_{1}<0$ to discuss in more detail than in Ref. [1] the physical meaning of complex solutions in the sub-Planckian cegion. In the fourth section, we study the consequences for the matching time used in the approximate analysis of [1] and show that the use of an incorrect matching time will lead to artificial oscillations in the spectrum ${ }^{2}$. First, however, we comment on some of the recent work on this subject.

Following Ref. [1], there has been a significant amount of work on the trans-Planckian problem for inflationary cosmology. The work has focused on two issues. The first is how broad the class of dispersion relations is for which there is a change in the spectrum of fluctuations, and whether there are other features in the linear perturbations which can be used to probe trans-Planckian physics. The second is whether the back-reaction of the excess fluctuations produced by modified dispersion relations are important and can have interesting consequences.

Let us for the moment focus on'the issue of the class of dispersion relations for which a modification of the spectrum of fluctuations is found. In_[6], the case of Unruh dispersion relations was studied in a de Sitter Universe, _ and no change in the spectrum was found, in agreement L-W Whe corresponding results in [1]. No dispersion relations of Corley/Jacobson type were studied in $[6]^{3}$. In [5, 7] the trans-Planckian problem of inflationary_cosmology was addressed assuming that the mode wavelfunction is of WKB-type form. Once again, no changes in the spectrum were found. It has been pointed out in [8] that for dispersion relations which lead to adiabatic evolution of the states on sub-Planckian scales - and WKB states fall into this category - there are no changes in the spectrum compared to what is obtained with a linear dispersion relation. As shown in [8], the evolution in the case of
${ }^{2}$ As pointed out in [5], there was a mistake in Section V.B. 2 of the first version of [1]: the incorrect choice of the matching time in the Corley/Jacobson case with $\boldsymbol{1}_{1}>0$ led to a spectrum which was the usual one times a con巾licated ${ }^{-}$oscillatory function, instead of to an unmodified spectrum. -' -'
${ }^{3}$ On this basis, the claims of Ref. [5] that "contradictory results" or "opposite results" were found in Refs. [1] and [6] are mislpading. Indeed, the only common case between these two article's is the'case of the Unruh dispersion relation in de Sitter spacetime for which exactly the same conclusion was obtained in Refs. [1] and [6].
the Corley-Jacobson dispersion relations with a negative sign of b_{1} is not adiabatic, and this is the reason that the spectrum is modified. Note that the change in_'the spectrum of fluctuations in the case of Corley/Jacobson dispersion relations with $b_{1}<0$ was confirmed in [7], where thesectispersion relations were labeled as "exceptional forms of $\omega(k)$ ". Other dispersion relations were studied in $[9,10,11,12]^{4}$.

The question of a possible dependence of the pre--dictions for linear cosmological fluctuations on' trans-- Planckian physicswirecently considered in the context of possible approaches to quantum gravity in $[14,15$, 16, 17]. In $[14,16,-17]$ the starting point was modifications of the commutation relations stemming from general considerations of short-distance quantum gravitational effects, and in [15] consequences of short-distance non-commutative geometry was investigated. Interésting deviations_of the spectrum of fluctuations from the usual results ware found. Specifically, the analysis of [15] showed that non-Gaussian fluctuations are expected, and the analysis of [17] revealed changes to the spectral shape.

To summarize the current state of knowledge on the issue of the possible dependence of the spectrum of fluctuations_on trans-Planckian physics, if the dispersion relation lagads tol adiabatic evolution of the vacuum state on sub-Planckian_length scales, then the spectrum is not modified $\left[5,7, \mathbb{L}^{1}\right.$. However, this restriction on the class of dispersion relations may exclude the cases of actual physical interest $[15,17]$. String theory, M-theory, noncommutative geometry and discrete quantum gravity can all lead to much more drastic changes in the effective dispersion relation and may hence result in changes in the spectrum of fluctuations which can be, probed observationally with current and future CMB experiments. Recently, two concrete examples where a change in the -'spegtrum is obtained were studied in Refs. [13, 18].

The second issue raised in recent work, in particular in $[7,19]$ is whether, if the power spectrum is indeed modified by trans-Planckian physics, there is a back-reaction problem ${ }^{5}$. The back-reaction problem is the following: when viewed at late times, the modified dispersion relations studied in [1] and in subsequent papers lead to mode functions which during inflation on length scales larger than ℓ_{C} but smaller than the Hubble radius are excited compared to the adiabatic vacuum. These fluctuations carry energy and momentum, and this energy could be so large as to turn doff inflation, in a similar manner as the back-reaction of cosmological fluctuations in models of chaotic inflation [20] can build up and ter-

${ }^{F}$ The goal of [10] was to provide a new modēlifor dark energy (see, - however, [13]), and in [11] and [12] novel dripersion relations were used to yield realizations of the varying speed of light scenario [11] and to obtain inflation from radiation [12].
5 Clearly, the back-reaction problem can only be raised as a second question once it has been established that there are important modifications to the fluctuation spectrum.
minate inflation. This is a very interesting issue which merits detailed study.

II. WKB APPROXIMATION VS. PIECEWISE SOLUTIONS

The equation of motion that needs to be solved in order to compute the power spectrum of cosmological perturbations is

$$
\begin{aligned}
& \text { in } \\
& \square
\end{aligned} \mu^{\prime \prime}+\omega^{2}(n, \eta) \mu=0,
$$

where the expression for ω is given below [see Eq. (7)]. Usually, Eq. (3) possesses two regimes depending on whether the wavelength λ of the mode is smaller or larger than the Hubble radius ℓ_{H}. In the presenti context, we deal with three different regimes. The first one is when $\lambda \ll \ell_{\mathrm{C}} \ll \ell_{\mathrm{H}}$. This, ${ }^{\text {d }}$ defines Region I of Ref.[1]. The second regime is such that $\ell_{\mathrm{C}} \ll \lambda \ll \ell_{\mathrm{H}}$ andicorresponds to Region II of Ref. [1]. Finally, the third regime is when $\ell_{\mathrm{C}} \ll \ell_{\mathrm{H}} \ll \lambda$: this is Region III of Ref. [1]. We recover the usual result for the spectrum of fluctuations if in Region II μ is given by_a single branch with a coefficient proportional to $1 / \sqrt{m}$ multiplying the plane wave solution.

The method used in Ref. [1] to determine the solution
of Eq. (3) is to findisolutions in the three regions and to match them at the boundaries between the regions. The method used in Ref. [5] is different and consists in utilizing the WKB approximation. In that case, the solution of Eq. (3) is given by

$$
\begin{equation*}
\mu_{\mathrm{wkb}}=\frac{1}{\sqrt{2 \omega(\eta)}} \exp \left[\pm i \int_{\eta_{\mathrm{i}}}^{\eta} \omega(\tau) \mathrm{d} \tau\right] \tag{4}
\end{equation*}
$$

where η_{i} is some initial time.
In cases where the adiabatic approximation is justified, the two methods aré'equivalent. To verify this, consider first Unruh's dispersion relation. Inserting the dispersion relation into Eq. (4) (using the minus sign) yields in Region I

$$
\begin{equation*}
\mu_{\mathrm{wkb}}=\frac{1}{2} \sqrt{\frac{\epsilon}{\pi}}\left|\eta_{\mathrm{i}}\right|^{1 / 2}\left(\left|\frac{\eta}{\eta_{\mathrm{i}}}\right|\right)_{-\mathbf{1}}^{-2 \pi i / \epsilon+1 / 2} \tag{5}
\end{equation*}
$$

This is nothing but Eq. (66) of Ref. [1] [i.e. Eq. (54) in the limit when $\epsilon \equiv \ell_{C} / \ell_{0}$ is small], properly normalized according to Eqs (56)-(57) of that reference. Similarly, in the case of tbe Corley/Jacobson dispersion relation (with $b_{1}>0$, in which case the adiabatic condition is satisfied [5]), Eq. (4) becomes

$$
\begin{equation*}
\mu_{\mathrm{wkb}}=2^{-1 / 2}\left(\frac{n \epsilon}{2 \pi}\right)^{-1 / 2} n^{-1 / 2} b_{1}^{-1 / 4}|\eta|^{-1 / 2} \exp \left[\mp i b_{1}^{1 / 2}\left(\frac{n \epsilon}{4 \pi}\right) n\left(|\eta|^{2}-\left|\eta_{\mathrm{i}}\right|^{2}\right)\right] \tag{6}
\end{equation*}
$$

\square 1 1

Again, this is the same result as obtained with the matching technique in Ref. [1]. To see this, take Eq. (118) of that reference, which provides the solution in Region I, consider the limit when z is large and use Eqs. (126) and (127) with the lower sign. In Biegion II, the solution is simply given by plane waves $\mu \simeq B_{1} e^{i n \eta}+B_{2} e^{-i n \eta}$ in agreement with Eq. (14) of Ref. [1].

\square

The advantage of the WKB method over the method used in Ref. [1] is that one does not have to perform the matching between the different regions. The disadvantage is that the WKB method applies only to examples in which the adiabaticity condition is satisfied. In the next section, we consider an exact model which allows us to avoid the matching between Region I and II. In the third section, we study the consequences for the matching time and show that an incorrect matching time could lead to artificial oscillations in the spectrum, as pointed out in Ref. [5].

III. THE EXACT MODEL

The effective time dependent frequency is given by the equation

$$
\begin{equation*}
\omega^{2}(n, \eta)=n_{\mathrm{eff}}^{2}-\frac{a^{\prime \prime}}{a} \tag{7}
\end{equation*}
$$

We consider the Corley-Jacobson dispersion relation given in Eq. (1) where, as already mentioned above, b_{1} is an arbitrary number which can be positive or negative. We restrict our consideration to the prototypical model of inflation, i.e. de_Sitter inflation. Then the scale factor can be written as $\operatorname{a}(i \eta)=\ell_{0} /|\eta|$. If we consider the evolution of the mode well inside horizon, the term $a^{\prime \prime} / a$ can be neglected in Eq. (3). Then, this equation takes on the form

$$
\begin{equation*}
\mu^{\prime \prime}+\left[n^{2}+b_{1}\left(\frac{n^{2} \epsilon}{2 \pi}\right)^{2}|\eta|^{2}\right] \mu=0 \tag{8}
\end{equation*}
$$

where $\epsilon \equiv \ell_{\mathrm{C}} / \ell_{0}$. Typically, ϵ is a very small number of the order 10^{-5}. We now need to distinguish between the
cases of positive or negative b_{1}. Let us first concentrate on the $b_{1}>0$ case. We make the following change of variables $-\eta=C x(x>0)$, where C is a constant given by $C=\left[\left(b_{1}\right)^{-1 / 4} / n\right] \sqrt{\pi / \epsilon}$. Then the equation of motion takes the form

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \mu}{\mathrm{~d} x^{2}}+\left(\frac{x^{2}}{4}-a\right) \mu=0, \quad a \equiv-\frac{\pi}{\substack{\boldsymbol{t}_{1} \sqrt{b_{1}}}}<0 . \tag{9}
\end{equation*}
$$

Clearly, this equation possesses two regimes. The first one, corresponding to Region I in Ref. [1], is when the quartic term of the dispersion relation dominates. Expressed in terms of the new variable x, this corresponds
to $x^{2} / 4 \gg|a|$. On the other hand, Region II of Ref. [1] corresponds to a region where the dispersion relation has become standard and $x^{2} / 4 \ll|a|$. The generalisolution of Eq. (9) (valid in both regions) is given in terms of parabolic cylinder functions $E(a, x)$ (see Ref. [21]) and reads

$$
\begin{equation*}
\mu=A_{1} E(a, x)+A_{2} E^{*}(a, x), \tag{10}
\end{equation*}
$$

where the two constants A_{1} and A_{2} are fixed by the initial conditions when $\eta \rightarrow-\infty$ (i.e. $x \rightarrow \infty$). In this limit, the asymptotic behavior is given by [21]

$$
\begin{align*}
\lim _{\eta \rightarrow-\infty} \mu= & b_{1}^{-1 / 8}\left(\frac{\pi}{\epsilon}\right)^{-1 / 4}\left(\frac{n \epsilon}{2 \pi}\right)^{-1 / 2}|\eta|^{-1 / 2}\left\{A_{1} \exp \left[i b_{1}^{1 / 2} \frac{n^{2} \epsilon}{4 \pi}|\eta|^{2}+i \frac{\pi}{4}+i \frac{\phi_{2}}{2}\right]\right. \\
& \left.+A_{2} \exp \left[-i b_{1}^{1 / 2} \frac{n^{2} \epsilon}{4 \pi}|\eta|^{2}-i \frac{\pi}{4}-i \frac{\phi_{2}}{2}\right]\right\}, \tag{11}
\end{align*}
$$

where $\phi_{2} \equiv \arg \Gamma(1 / 2+i a)$. Thus we reproduce the correct WKB behavior if we take

$$
\begin{equation*}
A_{1}=2^{-1 / 2} \frac{b_{1}^{-1 / 8}}{\sqrt{n}}\left(\frac{\pi}{\epsilon}\right)^{1 / 4} \exp \left[-i\left(b_{1}\right)^{1 / 2}\left(\frac{n^{2} \epsilon}{4 \pi}\right)\left|\eta_{\mathrm{i}}\right|^{2}-i \frac{\pi}{4}-i \frac{\phi_{2}}{2}\right], \quad A_{2}=0 \tag{12}
\end{equation*}
$$

Let us now study how this solution behaves in Region II. Usually, the solution in this region is given by $1 / \sqrt{2 n} e^{ \pm i n|\eta|}$. It is therefore sufficient to have only one branch proportional to $1 / \sqrt{n}$ to recover the standard scale-invariant spectrum. Using the asymptotic behavior of the parabolic cylinder functions when $x^{2} / 4 \ll|a|$, one finds

$$
\begin{equation*}
\mu \simeq A_{1}\left(\frac{\pi}{\epsilon}\right)^{-1 / 4} b_{1}^{1 / 8} \exp \left[i n|\eta|+i \frac{\pi}{4}\right], \tag{13}
\end{equation*}
$$

i.e. we precisely redoyer the conditions necessary to obtain a Harrison-Zeldovich spectrum, due to the fact that $A_{1} \propto 1 / \sqrt{n}$, see Eq. (12).

Let us now turn to the case $b_{1}<0$. An immediate consequence is that the dispersion relation $n_{\text {eff }}(n, \eta)$ vanishes at some point and then becomes complex. Therefore, we face the following problems. Firstly, in the region where $n_{\text {eff }}(n, \eta)$ is small, the term $a^{\prime \prime} / a$ is no longer negligible. In principle it should be taken into account in the equation of motion but no exact solution can then be found. However, this problem is not too serious because the effect of this term on the final spectrum is expected to be small. Secondly, a much more serious question is the fact that there is a region where we have to quantize a field in the presence of imaginary frequency modes. Although imaginary frequencies are standardtin classical physics and in quantum mechanics, they seem to be problematic in the context of quantum field theory [22] although there

"-

exist concrete physical situations where they are important [23]. Thirdly, we have to fix the initial conditions in the complex region. A possible choice for the initial conditions, which is consistent with the WKB result, is to keedionly the decreasing exponential in the region where the effective frequency becomes complex as proposed in Ref. [1]. Then, an exact solution in terms of parabolic cylinder functions $U(a, x)$ and $V(a, x)$ (see Ref. [21]) can be found. This gives a Harrison-Zeldovich spectrum corrected by oscillatidons and by an exponential term of the form $e^{A n^{2}}$. This result is in agreement with what was obtained in Ref. [1]. However, this result rests clearly on "non-standard physics" apd for this reason is not so attractive. Therefore, it is impgrtant to recall that there now exist two cases where the final spectrum is modified and everything is well-defined $[13,18]$.

IV. CONSEQUENCES FOR THE MATCHING PROCEDURE

We now investigate what we can learn from the previous exact solution with respect to the matching between Regions I and II. We concentrate on the Corley/Jacobson case with $b_{1}>0$. A priori, two natural choices for the matching time can be envisaged. The first choice is to match the solutions when $\lambda=\ell_{\mathrm{C}}$. This amounts to
choosing

$$
\begin{equation*}
\left|\eta_{\mathrm{j}}\right|=\left|\eta_{1}\right|=\left(\frac{n \ell_{\mathrm{C}}}{2 \pi \ell_{0}}\right)^{-1} \tag{14}
\end{equation*}
$$

Another possibility is to choose the matching time such that the usual and the extra contribution in the dispersion relation are equal

$$
\begin{equation*}
n^{2} b_{1}\left(\frac{\ell_{\mathrm{C}}}{\lambda}\right)^{2}=n^{2} \Rightarrow\left|\eta_{\mathrm{j}}\right|=\left|\eta_{1}^{\prime}\right|=\left(\frac{n \ell_{\mathrm{C}}}{2 \pi \ell_{0}}\right)^{-1} b_{1}^{-1 / 2} \tag{15}
\end{equation*}
$$

This is in fact equivalent to matching the frequencies $n_{\text {eff }}(n, \eta)$. Therefore, η_{1} and η_{1}^{\prime} are not equal unless $b_{1}=$ 1. Let us now perform the matching between Regions I and II. Then, the coefficient B_{1} is given by:

$$
\begin{align*}
2 i n B_{1} e^{i n \eta_{\mathrm{j}}}= & 2^{-1 / 2}\left(\frac{n \epsilon}{2 \pi}\right)^{-1 / 2} n^{-1 / 2} b_{1}^{-1 / 4}\left|\eta_{\mathrm{j}}\right|^{-1 / 2} \exp \left[\mp i b_{1}^{1 / 2}\left(\frac{n \epsilon}{4 \pi \beta}\right) n\left(\left|\eta_{\mathrm{j}}\right|^{2}-\left|\eta_{\mathrm{i}}\right|^{2}\right)\right] \\
& \times\left\{i n-\frac{1}{2}(1+\beta)\left|\eta_{\mathrm{j}}\right|^{-1} \pm i b_{1}^{1 / 2}\left(\frac{n \epsilon}{2 \pi}\right) n\left|\eta_{\mathrm{j}}\right|\right\} \tag{16}
\end{align*}
$$

For the curly bracket of the above expression one finds

$$
\begin{equation*}
\{\ldots\}_{1}=-\frac{1}{2}(1+\beta)\left|\eta_{\mathrm{j}}\right|^{-1}+\operatorname{in}\left(1 \pm\left|\frac{\eta_{\mathrm{j}}}{\eta_{1}^{\prime}}\right|\right) . \tag{17}
\end{equation*}
$$

In the same manner, one can determine B_{2} to be

$$
\begin{align*}
2 i n B_{2} e^{-i n \eta_{\mathrm{j}}}= & 2^{-1 / 2}\left(\frac{n \epsilon}{2 \pi}\right)^{-1 / 2} n^{-1 / 2} b_{1}^{-1 / 4}\left|\eta_{\mathrm{j}}\right|^{-1 / 2} \exp \left[\mp i b_{1}^{1 / 2}\left(\frac{n \epsilon}{4 \pi \beta}\right) n\left(\left|\eta_{\mathrm{j}}\right|^{2}-\left|\eta_{\mathrm{i}}\right|^{2}\right)\right] \\
& \times\left\{i n+\frac{1}{2}(1+\beta)\left|\eta_{\mathrm{j}}\right|^{-1} \mp i b_{1}^{1 / 2}\left(\frac{n \epsilon}{2 \pi}\right) n\left|\eta_{\mathrm{j}}\right|\right\} \tag{18}
\end{align*}
$$

Again, we can write the curly bracket in the previous expression as

$$
\begin{equation*}
\{\ldots\}_{2}=+\frac{1}{2}(1+\beta)\left|\eta_{j}\right|^{-1}+i n\left(1 \mp\left|\frac{\eta_{j}}{\eta_{1}^{\prime}}\right|\right) . \tag{19}
\end{equation*}
$$

The situation is now clear. If the joining is performed at $\eta_{j}=\eta_{1}$, the terms proportional to in in the curly brackets have no reason to cancel out and they are in fact of order one. The term proportional to $\left|\eta_{j}\right|^{-1}$ is very small and can be neglected. Therefore we reach the conclusion that $B_{1} \simeq B_{2}$ and we have oscillations. However, if we perform the matching at $\eta_{j}=\eta_{1}^{\prime}$ the situation is drastically different. This time one of the curly brackets vanishes and one of the B_{i} 's becomes of the order $\eta_{1}^{-1} \ll 1$, whereas the other one is of order 1 . In other words, only one branch survives, we have no oscillations and the spectrum of fluctuations is unchanged.

A comparison with the exact solution shows that the correctimatching time is η_{1}^{\prime}. Therefore, there are no oscillations in the spectrum in the case $b_{1}>0$, as pointed out in Ref. [5], and the spectrum is unchanged. On the other hand, for $b_{1}<0$ the spectrum is modified, in agreement
with the analysis of Ref. [1].

V. CONCLUSION

In this short letter, we have investigated the following technical points: (i) it has been shown that the method used in Ref. [1] is equivalent to the WKB approach, (ii) a new solution valid in the case of the Corley/Jacobson dispersion relation has been presented, (iii) in the case where piecewise solutions are used, the matching conditions have been studied. It has been demonstrated that the frequencies rather than the wavelengths should be matched (as could have been guessed from the equation of motion) and that if the latter regurement is utilized then artificial oscillations show up in the spectrum. These results complete the study of Ref. [1].

On more general grounds, the conclusion that follows from the previous considerations is that there is a sensitive dependence of the spectrum of cosmological fluctuations on the assumptions made at the level of subPlanckian physics. A separate issue is whether these
modifications are reasonable from a physical point of view. This question cannot be answered in the absence of a realistic thery, of physics beyond the Planck scale. To our knowledgéu, jit is still an open problem to derive a dispersion relation from, for example, string theory (see, however, Refs. [14, 24] for some recent progress).

Acknowledgements

We are grateful to Steve Corley for stimulating dis-
cussions and useful comments. We acknowledge support from the BROWN-CNRS University Accord which made possible the visit of J. M. to Brown during which some of the work on this project was done, and we are grateful to Herb Fried for his efforts to secure this Accord. J. M. thanks the High Energy Group of Brown University for warm hospitality. The research was supported in part by the U.S. Department of Energy under Contract DE-FG02-91ER40688, TASK A.

[1]-J.-Martin- artct P. H. Brandenberger, Phys. Rev. D 63,

- 123501. (2001), hep-th/0005209; R. H. Brandenberger and J. Martin, Mod. Phys. Lett. A 16, 999 (2001), astro-ph/0005432.
[2] V. F. Mukhanov, H. A. Feldman and R. H. Branden-
- -berger- Phys: Rept. 215, 203 (1992).
[3]-W. Inıuh -Pbys. Rev. D 51, 2827 (1995).
[4] S. Corley and-F.-Jacelsert,-Phys, Rev. D 54, 1568 (1996), hep-th/9601073
[5]-F.- E--Niemeyer, and R. Parentani, Phys.Rev. D 64, - -101301-(2001), a'stro-ph/0101451.
[6] J. C. Niemeyer, Phys. Rev. $D_{-}-63,-1-23502-(2001)$, astro-ph/0005533. \quad = = = = = = = = = = = =1
[7] A. A. Starobinsky, Pisma Zh. Ekspp-Tear- Fizm -73ד 415 - $-(-2 \oplus \theta 1)-[$ JETP-Irett. 73, 371 (2001)], astro-ph/0104043.
[\&]_.L Martin_and_R! H. Brandenberger, astro-ph/0012031.
[9] J. Kowalski-Glikmtant, -Physe-Gett. B 499, 1 (2001), astro-ph/00062占0
[10] L. Mersini, M. Bastero-Gil and-P. -Kanti, Plyys. Rev. D - - G4,-0-43508-(2Ө01), hep-ph/0101210.
[1i]-S. -Alexander-and J. Magueijo, hep-th/0104093.
[12] S. Alexander, R. Brandenberger and J. Magueijo, hep-th/0108190.
[13] M. Lemoine, M. Lubo, J. Martin and J. Uzan, Phys. Rev.
[14] A. Kempf, Phys.--Reve-f, 63, 083514 (2001), astro-ph/0009209.-------1
[15] C. Chri- B- Re -Greene-and G. Shiu, Mod. Phys. Lett. A 16, 2031-(2001) - hep-tb1/0011241
[16] A. Kempf and J. C. Niemeyer, Phys. -Reer- £-64 103501

[17]-R- Easther- B. R. Greene, W. H. Kinney and G. Shiu, L-Phys_Bez-R2
[18] R. H. Bramdeaberger,-S.-' E. Joras and J. Martin, hep-th/0112122.
[19] T. Tanaka, astro-ph/0012431.
[20] L. R. W. Abramo, R. H. Brandenberger and V. Mukhanov, Phys. Rev. D 56, 3248 (1997); V. Mukhanov, L. R. W. Abramo and R. H. Brandenberger, Phys. Rev. Lett. 78, 1624 (1997).
[21] I. S. Gractstiteym- -I: -M. Ryzhik, "Table of Integrals, Series, and Products", Sixth edition (2000), Academic Press.
[22] G. Gang, hep-ph/9,6G3-6G.-----
[23] L. I. Schiff, H. Snyter-and-I.-Weimberg, Phys. Rev. 57 315 (1940).
[24] G. Amelino-Camelia, gr-qc/0012051.

