2,739 research outputs found

    A study to explore the use of orbital remote sensing to determine native arid plant distribution

    Get PDF
    The author has identified the following significant results. It is possible to determine, from ERTS imagery, native arid plant distribution. Using techniques of multispectral masking and extensive fieldwork, three native vegetation communities were defined and mapped in the Avra Valley study area. A map was made of the Yuma area with the aid of ground truth correlations between areas of desert pavement visible on ERTS images and unique vegetation types. With the exception of the Yuma soil-vegetation correlation phenomena, only very gross differentiations of desert vegetation communities can be made from ERTS data. Vegetation communities with obvious vegetation density differences such as saguaro-paloverde, creosote bush, and riparian vegetation can be separated on the Avra Valley imagery while more similar communities such as creosote bush and saltbush could not be differentiated. It is suggested that large differences in vegetation density are needed before the signatures of two different vegetation types can be differentiated on ERTS imagery. This is due to the relatively insignificant contribution of vegetation to the total radiometric signature of a given desert scene. Where more detailed information concerning the vegetation of arid regions is required, large scale imagery is appropriate

    Are biogenic emissions a significant source of summertime atmospheric toluene in the rural Northeastern United States?

    Get PDF
    Summertime atmospheric toluene enhancements at Thompson Farm in the rural northeastern United States were unexpected and resulted in a toluene/benzene seasonal pattern that was distinctly different from that of other anthropogenic volatile organic compounds. Consequently, three hydrocarbon sources were investigated for potential contributions to the enhancements during 2004–2006. These included: (1) increased warm season fuel evaporation coupled with changes in reformulated gasoline (RFG) content to meet US EPA summertime volatility standards, (2) local industrial emissions and (3) local vegetative emissions. The contribution of fuel evaporation emission to summer toluene mixing ratios was estimated to range from 16 to 30 pptv d−1, and did not fully account for the observed enhancements (20–50 pptv) in 2004–2006. Static chamber measurements of alfalfa, a crop at Thompson Farm, and dynamic branch enclosure measurements of loblolly pine trees in North Carolina suggested vegetative emissions of 5 and 12 pptv d−1 for crops and coniferous trees, respectively. Toluene emission rates from alfalfa are potentially much larger as these plants were only sampled at the end of the growing season. Measured biogenic fluxes were on the same order of magnitude as the influence from gasoline evaporation and industrial sources (regional industrial emissions estimated at 7 pptv d−1 and indicated that local vegetative emissions make a significant contribution to summertime toluene enhancements. Additional studies are needed to characterize the variability and factors controlling toluene emissions from alfalfa and other vegetation types throughout the growing season

    Bromoform and dibromomethane measurements in the seacoast region of New Hampshire, 2002–2004

    Get PDF
    Atmospheric measurements of bromoform (CHBr3) and dibromomethane (CH2Br2) were conducted at two sites, Thompson Farm (TF) in Durham, New Hampshire (summer 2002–2004), and Appledore Island (AI), Maine (summer 2004). Elevated mixing ratios of CHBr3 were frequently observed at both sites, with maxima of 37.9 parts per trillion by volume (pptv) and 47.4 pptv for TF and AI, respectively. Average mixing ratios of CHBr3 and CH2Br2 at TF for all three summers ranged from 5.3–6.3 and 1.3–2.3 pptv, respectively. The average mixing ratios of both gases were higher at AI during 2004, consistent with AI\u27s proximity to sources of these bromocarbons. Strong negative vertical gradients in the atmosphere corroborated local sources of these gases at the surface. At AI, CHBr3 and CH2Br2 mixing ratios increased with wind speed via sea‐to‐air transfer from supersaturated coastal waters. Large enhancements of CHBr3 and CH2Br2 were observed at both sites from 10 to 14 August 2004, coinciding with the passage of Tropical Storm Bonnie. During this period, fluxes of CHBr3 and CH2Br2 were 52.4 ± 21.0 and 9.1 ± 3.1 nmol m−2 h−1, respectively. The average fluxes of CHBr3 and CH2Br2 during nonevent periods were 18.9 ± 12.3 and 2.6 ± 1.9 nmol m−2 h−1, respectively. Additionally, CHBr3 and CH2Br2 were used as marine tracers in case studies to (1) evaluate the impact of tropical storms on emissions and distributions of marine‐derived gases in the coastal region and (2) characterize the transport of air masses during pollution episodes in the northeastern United States

    A comparison of GC-FID and PTR-MS toluene measurements in ambient air under conditions of enhanced monoterpene loading

    Get PDF
    Toluene was measured using both a gas chromatographic system (GC), with a flame ionization detector (FID), and a proton transfer reaction-mass spectrometer (PTR-MS) at the AIRMAP atmospheric monitoring station Thompson Farm (THF) in rural Durham, NH during the summer of 2004. Simultaneous measurements of monoterpenes, including alpha- and beta-pinene, camphene, Delta(3)-carene, and d-limonene, by GC-FID demonstrated large enhancements in monoterpene mixing ratios relative to toluene, with median and maximum enhancement ratios of similar to 2 and similar to 30, respectively. A detailed comparison between the GC-FID and PTR-MS toluene measurements was conducted to test the specificity of PTR-MS for atmospheric toluene measurements under conditions often dominated by biogenic emissions. We derived quantitative estimates of potential interferences in the PTR-MS toluene measurements related to sampling and analysis of monoterpenes, including fragmentation of the monoterpenes and some of their primary carbonyl oxidation products via reactions with H(3)O(+), O(2)(+) and NO(+) in the PTR-MS drift tube. The PTR-MS and GC-FID toluene measurements were in good quantitative agreement and the two systems tracked one another well from the instrumental limits of detection to maximum mixing ratios of similar to 0.5 ppbv. A correlation plot of the PTR-MS versus GC-FID toluene measurements was described by the least squares regression equation y=(1.13 +/- 0.02)x-(0.008 +/- 0.003) ppbv, suggesting a small similar to 13% positive bias in the PTR-MS measurements. The bias corresponded with a similar to 0.055 ppbv difference at the highest measured toluene level. The two systems agreed quantitatively within the combined 1 sigma measurement precisions for 60% of the measurements. Discrepancies in the measured mixing ratios were not well correlated with enhancements in the monoterpenes. Better quantitative agreement between the two systems was obtained by correcting the PTR-MS measurements for contributions from monoterpene fragmentation in the PTR-MS drift tube; however, the improvement was minor (\u3c10%). Interferences in the PTRMS measurements from fragmentation of the monoterpene oxidation products pinonaldehyde, caronaldehyde and alpha-pinene oxide were also likely negligible. A relatively large and variable toluene background in the PTR-MS instrument likely drove the measurement bias; however, the precise contribution was difficult to accurately quantify and thus was not corrected for in this analysis. The results from THF suggest that toluene can be reliably quantified by PTR-MS using our operating conditions (drift tube pressure, temperature and voltage of 2.0 mbar, 45 degrees C and 600V, respectively) under the ambient compositions probed. This work extends the range of field conditions under which PTR-MS validation studies have been conducted

    Volatile organic compounds in northern New England marine and continental environments during the ICARTT 2004 campaign

    Get PDF
    Volatile organic compound (VOC) measurements were made during the summer 2004 International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) at Thompson Farm (TF), a continental site 25 km from the New Hampshire coast, and Appledore Island (AI), a marine site 10 km off the Maine coast. The 24 h mean total hydroxyl radical (OH) reactivity (±1σ) for the suite of VOCs was 4.15 (±2.64) s−1 at TF and 2.57 (±1.10) s−1 at AI. The larger range of reactivity at TF was dominated by isoprene and the monoterpenes (mean combined reactivity = 2.01 (±2.57) s−1). The impact of local anthropogenic hydrocarbon sources such as liquefied petroleum gas (LPG) leakage and fossil fuel evaporation was evident at both sites. During the campaign, a propane flux of 9 (±2) × 109 molecules cm−2 s−1 was calculated from the linear regression of the mean 0100–0400 local time mixing ratios at TF. This is consistent with fluxes observed in 2003 at sites spread throughout the coastal area of New Hampshire indicating that LPG tank leakage is a major hydrocarbon source throughout the region. Net monoterpene fluxes during ICARTT at TF were 6 (±2), 1.8 (±0.4), 1.2 (±0.6), and 0.4 (±0.5) × 109 molecules cm−2 s−1 for α‐pinene, β‐pinene, camphene, and limonene, respectively. Comparison to estimated NO3 and O3 loss rates indicate that gross monoterpene emission rates were approximately double the observed net fluxes at TF and comparable to current monoterpene nighttime emission inventory estimates for the northeast

    A reduced subduction graph and higher multiplicity in S_n transformation coefficients

    Full text link
    Transformation coefficients between {\it standard} bases for irreducible representations of the symmetric group SnS_n and {\it split} bases adapted to the Sn1×Sn2SnS_{n_1} \times S_{n_2} \subset S_n subgroup (n1+n2=nn_1 +n_2 = n) are considered. We first provide a \emph{selection rule} and an \emph{identity rule} for the subduction coefficients which allow to decrease the number of unknowns and equations arising from the linear method by Pan and Chen. Then, using the {\it reduced subduction graph} approach, we may look at higher multiplicity instances. As a significant example, an orthonormalized solution for the first multiplicity-three case, which occurs in the decomposition of the irreducible representation [4,3,2,1][4,3,2,1] of S10S_{10} into [3,2,1][3,1][3,2,1] \otimes [3,1] of S6×S4S_6 \times S_4, is presented and discussed.Comment: 12 pages, 1 figure, iopart class, Revisited version (several typographical errors have been corrected). Accepted for publication in J. Phys. A: Math. Ge
    corecore