9,237 research outputs found

    Analysis of atmospheric flow over a surface protrusion using the turbulence kinetic energy equation with reference to aeronautical operating systems

    Get PDF
    Flow over surface obstructions can produce significantly large wind shears such that adverse flying conditions can occur for aeronautical systems (helicopters, STOL vehicles, etc.). Atmospheric flow fields resulting from a semi-elliptical surface obstruction in an otherwise horizontally homogeneous statistically stationary flow are modelled with the boundary-layer/Boussinesq-approximation of the governing equation of fluid mechanics. The turbulence kinetic energy equation is used to determine the dissipative effects of turbulent shear on the mean flow. Iso-lines of turbulence kinetic energy and turbulence intensity are plotted in the plane of the flow and highlight regions of high turbulence intensity in the stagnation zone and sharp gradients in intensity along the transition from adverse to favourable pressure gradient. Discussion of the effects of the disturbed wind field in CTOL and STOL aircraft flight path and obstruction clearance standards is given. The results indicate that closer inspection of these presently recommended standards as influenced by wind over irregular terrains is required

    Fog dispersion

    Get PDF
    The concept of using the charged particle technique to disperse warm fog at airports is investigated and compared with other techniques. The charged particle technique shows potential for warm fog dispersal, but experimental verification of several significant parameters, such as particle mobility and charge density, is needed. Seeding and helicopter downwash techniques are also effective for warm fog disperals, but presently are not believed to be viable techniques for routine airport operations. Thermal systems are currently used at a few overseas airports; however, they are expensive and pose potential environmental problems

    A review of the meteorological parameters which affect aerial application

    Get PDF
    The ambient wind field and temperature gradient were found to be the most important parameters. Investigation results indicated that the majority of meteorological parameters affecting dispersion were interdependent and the exact mechanism by which these factors influence the particle dispersion was largely unknown. The types and approximately ranges of instrumented capabilities for a systematic study of the significant meteorological parameters influencing aerial applications were defined. Current mathematical dispersion models were also briefly reviewed. Unfortunately, a rigorous dispersion model which could be applied to aerial application was not available

    Proceedings: Sixth Annual Workshop on Meteorological and Environmental Inputs to Aviation Systems

    Get PDF
    The topics of interaction of the atmosphere with aviation systems, the better definition and implementation of services to operators, and the collection and interpretation of data for establishing operational criteria relating the total meteorological inputs from the atmospheric sciences to the needs of aviation communities were addressed

    Silicone modified resins for graphite fiber laminates

    Get PDF
    The development of silicon modified resins for graphite fiber laminates which will prevent the dispersal of graphite fibers when the composites are burned is discussed. Eighty-five silicone modified resins were synthesized and evaluated including unsaturated polyesters, thermosetting methacrylates, epoxies, polyimides, and phenolics. Neat resins were judged in terms of Si content, homogeneity, hardness, Char formation, and thermal stability. Char formation was estimated by thermogravimetry to 1,000 C in air and in N2. Thermal stability was evaluated by isothermal weight loss measurements for 200 hrs in air at three temperatures. Four silicone modified epoxies were selected for evaluation in unidirectional filament wound graphite laminates. Neat samples of these resins had 1,000 C char residues of 25 to 50%. The highest flexural values measured for the laminates were a strength of 140 kpsi and a modulus of 10 Mpsi. The highest interlaminar shear strength was 5.3 kpsi

    Silicone modified resins for graphite fiber laminates

    Get PDF
    Six silicone modified resins were selected for evaluation in unidirectional filament wound graphite laminates. Neat samples of these resins had 1,000 C char residues of 6-63%. The highest flexural values measured for the laminates were a strength of 1,220 MPa and a modulus of 105 GPa. The highest interlaminar shear strength was 72 MPa

    Synthesis of pyrrone polymers, 21 June 1967 - 21 June 1968

    Get PDF
    Synthesis of pyrrone polymers by reactions of dianhydride and diacetoamido diamines or with tetramin

    Low-level gust gradient program and avialtion workshop effort

    Get PDF
    The Proceedings of the Workshop on Meteorological and Environmental Inputs to Aviation Systems, hosted by the University of Tennessee Space Institute, October 26-28, 1982, were prepared for publication. The Proceedings were submitted to FAA and will be distributed by August. Also, the proceedings of a one day workshop devoted specifically to wind shear and hosted during the same time frame were prepared and distributed. Plans for the 1983 workshop are proceeding extremely well. The workshop theme was established, the committee topics identified, and all ten committee chairmen contacted have agreed to accept their respective assignments. Additional logistics for the workshop are being carried out. The 1983 workshop is scheduled for October 26-28, 1983. Data gathered with the B-57B during the Joint Airport Weather Studies Project in Denver, Colorado, were analyzed. All runs for Flight 6 on July 16, 1982, were analyzed. Spectra, cross spectra and probability distributions were computed for each run. Also, Runs 10-14 of Flight 7 on July 15, 1982, were analyzed in similar detail

    SRB ascent aerodynamic heating design criteria reduction study, volume 1

    Get PDF
    An independent set of solid rocket booster (SRB) convective ascent design environments were produced which would serve as a check on the Rockwell IVBC-3 environments used to design the ascent phase of flight. In addition, support was provided for lowering the design environments such that Thermal Protection System (TPS), based on conservative estimates, could be removed leading to a reduction in SRB refurbishment time and cost. Ascent convective heating rates and loads were generated at locations in the SRB where lowering the thermal environment would impact the TPS design. The ascent thermal environments are documented along with the wind tunnel/flight test data base used as well as the trajectory and environment generation methodology. Methodology, as well as, environment summaries compared to the 1980 Design and Rockwell IVBC-3 Design Environment are presented in this volume, 1

    Intercalation of Hydrotalcites with Hexacyanoferrate(II) and (III)-a ThermoRaman Spectroscopic Study

    Get PDF
    Raman spectroscopy using a hot stage indicates that the intercalation of hexacyanoferrate(II) and (III) in the interlayer space of a Mg,Al hydrotalcites leads to layered solids where the intercalated species is both hexacyanoferrate(II) and (III). Raman spectroscopy shows that depending on the oxidation state of the initial hexacyanoferrate partial oxidation and reduction takes place upon intercalation. For the hexacyanoferrate(III) some partial reduction occurs during synthesis. The symmetry of the hexacyanoferrate decreases from Oh existing for the free anions to D3d in the hexacyanoferrate interlayered hydrotalcite complexes. Hot stage Raman spectroscopy reveals the oxidation of the hexacyanoferrate(II) to hexacyanoferrate(III) in the hydrotalcite interlayer with the removal of the cyanide anions above 250 °C. Thermal treatment causes the loss of CN ions through the observation of a band at 2080 cm-1. The hexacyanoferrate (III) interlayered Mg,Al hydrotalcites decomposes above 150 °C
    corecore